Skip to main content
Log in

Targeting phosphatidylinositol 3 kinase (PI3K)-Akt beyond rapalogs

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

The activation of the phosphatidylinositol 3 kinase (PI3K)-Akt pathway is a known causal mechanism of oncogenesis and resistance to cancer treatments. The process of PI3K-Akt pathway activation is complex and includes receptor tyrosine kinase(RTK) activation, PIK3CA mutations, loss of phosphatase and tensin homolog (PTEN), Akt mutations, tuberous sclerosis complex (TSC) mutations, and Ras homologue enriched in brain (RHEB) gene amplifications. The blockage of mammalian target of rapamycin (mTOR), the key downstream pathway protein, has been successful in selected cancer types, with mTOR-targeting agents available for clinical use. Other novel drugs blocking this pathway such as PI3K inhibitors, Akt inhibitors and PDK-1 inhibitors are currently only available for investigational use, but have shown promise as cancer therapies in both preclinical and early phase clinical studies. The newer generations of these inhibitors are more specific and have improved potency and safety. The combinations of targeted treatments against this pathway, blocking multiple different steps, are under preliminary investigation. Further research is needed to identify the biomarkers that predict treatment response and resistance in order to optimize personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, Staroslawska E, Sosman J, McDermott D, Bodrogi I, Kovacevic Z, Lesovoy V, Schmidt-Wolf IGH, Barbarash O, Gokmen E, O’Toole T, Lustgarten S, Moore L, Motzer RJ, the Global ARCC Trial, (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356(22):2271–2281. doi:10.1056/NEJMoa066838

    Article  PubMed  CAS  Google Scholar 

  2. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, Grünwald V, Thompson JA, Figlin RA, Hollaender N, Urbanowitz G, Berg WJ, Kay A, Lebwohl D, Ravaud A (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372(9637):449–456

    Article  PubMed  CAS  Google Scholar 

  3. Witzig TE, Reeder CB, LaPlant BR, Gupta M, Johnston PB, Micallef IN, Porrata LF, Ansell SM, Colgan JP, Jacobsen ED, Ghobrial IM, Habermann TM (2010) A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia 25(2):341–347

    Article  PubMed  CAS  Google Scholar 

  4. Baselga J, Semiglazov V, van Dam P, Manikhas A, Bellet M, Mayordomo J, Campone M, Kubista E, Greil R, Bianchi G, Steinseifer J, Molloy B, Tokaji E, Gardner H, Phillips P, Stumm M, Lane HA, Dixon JM, Jonat W, Rugo HS (2009) Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor–positive breast cancer. J Clin Oncol 27(16):2630–2637. doi:10.1200/jco.2008.18.8391

    Article  PubMed  CAS  Google Scholar 

  5. Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6(9):729–734

    Article  PubMed  CAS  Google Scholar 

  6. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484. doi:10.1016/j.cell.2006.01.016

    Article  PubMed  CAS  Google Scholar 

  7. Sparks CA, Guertin DA (2010) Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 29(26):3733–3744

    Article  PubMed  CAS  Google Scholar 

  8. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11(5):329–341. doi:10.1038/nrm2882

    Article  PubMed  CAS  Google Scholar 

  9. Kang S, Bader AG, Vogt PK (2005) Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA 102(3):802–807. doi:10.1073/pnas.0408864102

    Article  PubMed  CAS  Google Scholar 

  10. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, Symmans WF, Pusztai L, Nolden LK, Horlings H, Berns K, Hung MC, van de Vijver MJ, Valero V, Gray JW, Bernards R, Mills GB, Hennessy BT (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68(15):6084–6091. doi:10.1158/0008-5472.CAN-07-6854

    Article  PubMed  CAS  Google Scholar 

  11. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670):554. doi:10.1126/science.1096502

    Article  PubMed  CAS  Google Scholar 

  12. Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X, Yu JS, Malmström P-O, Mansukhani M, Enoksson J, Hibshoosh H, Borg Å, Parsons R (2005) PIK3CA Mutations Correlate with Hormone Receptors, Node Metastasis, and ERBB2, and Are Mutually Exclusive with PTEN Loss in Human Breast Carcinoma. Cancer Res 65(7):2554–2559

    Article  PubMed  CAS  Google Scholar 

  13. Karakas B, Bachman KE, Park BH (2006) Mutation of the PIK3CA oncogene in human cancers. Br J Cancer 94(4):455–459

    Article  PubMed  CAS  Google Scholar 

  14. Wu G, Xing M, Mambo E, Huang X, Liu J, Guo Z, Chatterjee A, Goldenberg D, Gollin SM, Sukumar S, Trink B, Sidransky D (2005) Somatic mutation and gain of copy number of PIK3CA in human breast cancer. Breast Cancer Res 7(5):R609–616. doi:10.1186/bcr1262

    Article  PubMed  CAS  Google Scholar 

  15. Marsh DJ, Dahia PL, Zheng Z, Liaw D, Parsons R, Gorlin RJ, Eng C (1997) Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet 16(4):333–334. doi:10.1038/ng0897-333

    Article  PubMed  CAS  Google Scholar 

  16. Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, Bose S, Call KM, Tsou HC, Peacocke M, Eng C, Parsons R (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16(1):64–67. doi:10.1038/ng0597-64

    Article  PubMed  CAS  Google Scholar 

  17. Riegert-Johnson DL, Gleeson FC, Roberts M, Tholen K, Youngborg L, Bullock M, Boardman LA (2010) Cancer and Lhermitte-Duclos disease are common in Cowden syndrome patients. Hered Cancer Clin Pract 8(1):6. doi:10.1186/1897-4287-8-6

    Article  PubMed  Google Scholar 

  18. Wang SI, Puc J, Li J, Bruce JN, Cairns P, Sidransky D, Parsons R (1997) Somatic Mutations of PTEN in Glioblastoma Multiforme. Cancer Res 57(19):4183–4186

    PubMed  CAS  Google Scholar 

  19. Sano T, Lin H, Chen X, Langford LA, Koul D, Bondy ML, Hess KR, Myers JN, Hong Y-K, Yung WKA, Steck PA (1999) Differential Expression of MMAC/PTEN in Glioblastoma Multiforme. Cancer Res 59(8):1820–1824

    PubMed  CAS  Google Scholar 

  20. Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG, Jen J, Isaacs WB, Bova GS, Sidransky D (1997) Frequent Inactivation of PTEN/MMAC1 in Primary Prostate Cancer. Cancer Res 57(22):4997–5000

    PubMed  CAS  Google Scholar 

  21. Kong D, Suzuki A, Zou TT, Sakurada A, Kemp LW, Wakatsuki S, Yokoyama T, Yamakawa H, Furukawa T, Sato M, Ohuchi N, Sato S, Yin J, Wang S, Abraham JM, Souza RF, Smolinski KN, Meltzer SJ, Horii A (1997) PTEN1 is frequently mutated in primary endometrial carcinomas. Nat Genet 17(2):143–144. doi:10.1038/ng1097-143

    Article  PubMed  CAS  Google Scholar 

  22. Kang Y-H, Lee HS, Kim WH (2002) Promoter Methylation and Silencing of PTEN in Gastric Carcinoma. Lab Invest 82(3):285–291

    PubMed  CAS  Google Scholar 

  23. Salvesen HB, MacDonald N, Ryan A, Jacobs IJ, Lynch ED, Akslen LA, Das S (2001) PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer 91(1):22–26. doi:10.1002/1097-0215

    Article  PubMed  CAS  Google Scholar 

  24. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex. Science 307(5712):1098–1101

    Article  PubMed  CAS  Google Scholar 

  25. Bellacosa A, Chan TO, Ahmed NN, Datta K, Malstrom S, Stokoe D, McCormick F, Feng J, Tsichlis P (1998) Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 17(3):313–325. doi:10.1038/sj.onc.1201947

    Article  PubMed  CAS  Google Scholar 

  26. Manning BD, Cantley LC (2007) AKT/PKB Signaling: Navigating Downstream. Cell 129(7):1261–1274. doi:10.1016/j.cell.2007.06.009

    Article  PubMed  CAS  Google Scholar 

  27. Clark AS, West K, Streicher S, Dennis PA (2002) Constitutive and Inducible Akt Activity Promotes Resistance to Chemotherapy, Trastuzumab, or Tamoxifen in Breast Cancer Cells. Mol Cancer Ther 1(9):707–717

    PubMed  CAS  Google Scholar 

  28. Chen WS, Xu P-Z, Gottlob K, Chen M-L, Sokol K, Shiyanova T, Roninson I, Weng W, Suzuki R, Tobe K, Kadowaki T, Hay N (2001) Growth retardation and increased apoptosis in mice with homozygous disruption of the akt1 gene. Genes Dev 15(17):2203–2208

    Article  PubMed  CAS  Google Scholar 

  29. Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ (2001) Akt1/PKBα Is Required for Normal Growth but Dispensable for Maintenance of Glucose Homeostasis in Mice. J Biol Chem 276(42):38349–38352

    Article  PubMed  CAS  Google Scholar 

  30. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ (2001) Insulin Resistance and a Diabetes Mellitus-Like Syndrome in Mice Lacking the Protein Kinase Akt2 (PKBβ). Science 292(5522):1728–1731

    Article  PubMed  CAS  Google Scholar 

  31. Tschopp O, Yang Z-Z, Brodbeck D, Dummler BA, Hemmings-Mieszczak M, Watanabe T, Michaelis T, Frahm J, Hemmings BA (2005) Essential role of protein kinase Bγ (PKBγ/Akt3) in postnatal brain development but not in glucose homeostasis. Development 132(13):2943–2954

    Article  PubMed  CAS  Google Scholar 

  32. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian Y-W, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai M-HT, Blanchard KL, Thomas JE (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448(7152):439–444

    Article  PubMed  CAS  Google Scholar 

  33. Kim MS, Jeong EG, Yoo NJ, Lee SH (2008) Mutational analysis of oncogenic AKT E17K mutation in common solid cancers and acute leukaemias. Br J Cancer 98(9):1533–1535

    Article  PubMed  CAS  Google Scholar 

  34. Bleeker FE, Lamba S, Zanon C, van Tilborg AA, Leenstra S, Troost D, Hulsebos T, Vandertop WP, Bardelli A (2009) Absence of <italic> AKT1</italic> Mutations in Glioblastoma. PLoS ONE 4(5):e5638

    Article  PubMed  CAS  Google Scholar 

  35. Askham JM, Platt F, Chambers PA, Snowden H, Taylor CF, Knowles MA (2009) AKT1 mutations in bladder cancer: identification of a novel oncogenic mutation that can co-operate with E17K. Oncogene 29(1):150–155

    Article  PubMed  CAS  Google Scholar 

  36. Kirkegaard T, Witton CJ, Edwards J, Nielsen KV, Jensen LB, Campbell FM, Cooke TG, Bartlett JMS (2010) Molecular alterations in AKT1, AKT2 and AKT3 detected in breast and prostatic cancer by FISH. Histopathology 56(2):203–211. doi:10.1111/j.1365-2559.2009.03467.x

    Article  PubMed  Google Scholar 

  37. Inoki K, Guan K-L (2006) Complexity of the TOR signaling network. Trends Cell Biol 16(4):206–212. doi:10.1016/j.tcb.2006.02.002

    Article  PubMed  CAS  Google Scholar 

  38. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945. doi:10.1101/gad.1212704

    Article  PubMed  CAS  Google Scholar 

  39. Sarbassov DD, Ali SM, Kim D-H, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton. Curr Biol 14(14):1296–1302

    Article  PubMed  CAS  Google Scholar 

  40. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128

    Article  PubMed  CAS  Google Scholar 

  41. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128. doi:10.1038/ncb1183

    Article  PubMed  CAS  Google Scholar 

  42. Bjornsson J, Short MP, Kwiatkowski DJ, Henske EP (1996) Tuberous sclerosis-associated renal cell carcinoma. Clinical, pathological, and genetic features. Am J Pathol 149(4):1201–1208

    PubMed  CAS  Google Scholar 

  43. Garami A, Zwartkruis FJT, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma SC, Hafen E, Bos JL, Thomas G (2003) Insulin Activation of Rheb, a Mediator of mTOR/S6K/4E-BP Signaling, Is Inhibited by TSC1 and 2. Mol Cell 11(6):1457–1466. doi:10.1016/s1097-2765(03)00220-x

    Article  PubMed  CAS  Google Scholar 

  44. Li Y, Corradetti MN, Inoki K, Guan KL (2004) TSC2: Filling the GAP in the mTOR signaling pathway. Trends Biochem Sci 29(1):32–38

    Article  PubMed  CAS  Google Scholar 

  45. Gao X, Zhang Y, Arrazola P, Hino O, Kobayashi T, Yeung RS, Ru B, Pan D (2002) Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol 4(9):699–704

    Article  PubMed  CAS  Google Scholar 

  46. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5(6):578–581

    Article  PubMed  CAS  Google Scholar 

  47. Jiang WG, Sampson J, Martin TA, Lee-Jones L, Watkins G, Douglas-Jones A, Mokbel K, Mansel RE (2005) Tuberin and hamartin are aberrantly expressed and linked to clinical outcome in human breast cancer: the role of promoter methylation of TSC genes. Eur J Cancer 41(11):1628–1636. doi:10.1016/j.ejca.2005.03.023

    Article  PubMed  CAS  Google Scholar 

  48. Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17(15):1829–1834. doi:10.1101/gad.1110003

    Article  PubMed  CAS  Google Scholar 

  49. Sato T, Nakashima A, Guo L, Tamanoi F (2009) Specific Activation of mTORC1 by Rheb G-protein in Vitro Involves Enhanced Recruitment of Its Substrate Protein. J Biol Chem 284(19):12783–12791

    Article  PubMed  CAS  Google Scholar 

  50. Aspuria P-J, Tamanoi F (2004) The Rheb family of GTP-binding proteins. Cell Signal 16(10):1105–1112. doi:10.1016/j.cellsig.2004.03.019

    Article  PubMed  CAS  Google Scholar 

  51. Nardella C, Chen Z, Salmena L, Carracedo A, Alimonti A, Egia A, Carver B, Gerald W, Cordon-Cardo C, Pandolfi PP (2008) Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events. Genes Dev 22(16):2172–2177

    Article  PubMed  CAS  Google Scholar 

  52. Lu ZH, Shvartsman MB, Lee AY, Shao JM, Murray MM, Kladney RD, Fan D, Krajewski S, Chiang GG, Mills GB, Arbeit JM (2010) Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis. Cancer Res 70(8):3287–3298. doi:10.1158/0008-5472.CAN-09-3467

    Article  PubMed  CAS  Google Scholar 

  53. Mavrakis KJ, Zhu H, Silva RL, Mills JR, Teruya-Feldstein J, Lowe SW, Tam W, Pelletier J, Wendel HG (2008) Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev 22(16):2178–2188. doi:10.1101/gad.1690808

    Article  PubMed  CAS  Google Scholar 

  54. Mora A, Komander D, van Aalten DMF, Alessi DR (2004) PDK1, the master regulator of AGC kinase signal transduction. Sem Cell Dev Biol 15(2):161–170. doi:10.1016/j.semcdb.2003.12.022

    Article  CAS  Google Scholar 

  55. Lin HJ, Hsieh FC, Song H, Lin J (2005) Elevated phosphorylation and activation of PDK-1//AKT pathway in human breast cancer. Br J Cancer 93(12):1372–1381

    Article  PubMed  CAS  Google Scholar 

  56. Jope RS, Johnson GVW (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29(2):95–102. doi:10.1016/j.tibs.2003.12.004

    Article  PubMed  CAS  Google Scholar 

  57. Ougolkov AV, Fernandez-Zapico ME, Bilim VN, Smyrk TC, Chari ST, Billadeau DD (2006) Aberrant nuclear accumulation of glycogen synthase kinase-3beta in human pancreatic cancer: association with kinase activity and tumor dedifferentiation. Clin Cancer Res 12(17):5074–5081. doi:10.1158/1078-0432.CCR-06-0196

    Article  PubMed  CAS  Google Scholar 

  58. Wang Z, Smith KS, Murphy M, Piloto O, Somervaille TC, Cleary ML (2008) Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature 455(7217):1205–1209. doi:10.1038/nature07284

    Article  PubMed  CAS  Google Scholar 

  59. Obsil T, Obsilova V (2008) Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene 27(16):2263–2275

    Article  PubMed  CAS  Google Scholar 

  60. Abid MR, Guo S, Minami T, Spokes KC, Ueki K, Skurk C, Walsh K, Aird WC (2004) Vascular Endothelial Growth Factor Activates PI3K/Akt/Forkhead Signaling in Endothelial Cells. Arterioscler Thromb Vasc Biol 24(2):294–300. doi:10.1161/01.atv.0000110502.10593.06

    Article  PubMed  CAS  Google Scholar 

  61. Dey JH, Bianchi F, Voshol J, Bonenfant D, Oakeley EJ, Hynes NE (2010) Targeting Fibroblast Growth Factor Receptors Blocks PI3K/AKT Signaling, Induces Apoptosis, and Impairs Mammary Tumor Outgrowth and Metastasis. Cancer Res 70(10):4151–4162. doi:10.1158/0008-5472.can-09-4479

    Article  PubMed  CAS  Google Scholar 

  62. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL, Bhagat G, Agarwal AM, Basso G, Castillo M, Nagase S, Cordon-Cardo C, Parsons R, Zuniga-Pflucker JC, Dominguez M, Ferrando AA (2007) Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13(10):1203–1210

    Article  PubMed  CAS  Google Scholar 

  63. Schnell CR, Stauffer F, Allegrini PR, O’Reilly T, McSheehy PMJ, Dartois C, Stumm M, Cozens R, Littlewood-Evans A, García-Echeverría C, Maira S-M (2008) Effects of the Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor NVP-BEZ235 on the Tumor Vasculature: Implications for Clinical Imaging. Cancer Res 68(16):6598–6607. doi:10.1158/0008-5472.can-08-1044

    Article  PubMed  CAS  Google Scholar 

  64. Ye M, Hu D, Tu L, Zhou X, Lu F, Wen B, Wu W, Lin Y, Zhou Z, Qu J (2008) Involvement of PI3K/Akt Signaling Pathway in Hepatocyte Growth Factor–Induced Migration of Uveal Melanoma Cells. Invest Ophal Vis Sci 49(2):497–504. doi:10.1167/iovs.07-0975

    Article  Google Scholar 

  65. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954. doi:10.1038/nature00766

    Article  PubMed  CAS  Google Scholar 

  66. Kefford R, Arkenau H, Brown MP, Millward M, Infante JR, Long GV, Ouellet D, Curtis M, Lebowitz PF, Falchook GS (2010) Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. ASCO Meet Abstr 28(15_suppl):8503

    Google Scholar 

  67. Patel SP, Lazar AJ, Mahoney S, Vaughn C, Gonzalez N, Papadopoulos NE, Liu P, Infante JR, LoRusso P, Kim KB (2010) Clinical responses to AZD6244 (ARRY-142886)-based combination therapy stratified by gene mutations in patients with metastatic melanoma. ASCO Meet Abstr 28(15_suppl):8501

    Google Scholar 

  68. Jiang CC, Lai F, Thorne RF, Yang F, Liu H, Hersey P, Zhang XD (2010) MEK-Independent Survival of B-RAFV600E Melanoma Cells Selected for Resistance to Apoptosis Induced by the RAF Inhibitor PLX4720. Clin Cancer Res. doi:10.1158/1078-0432.ccr-10-2225

    Google Scholar 

  69. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ (2006) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26(13):1932–1940

    Article  PubMed  CAS  Google Scholar 

  70. O’Reilly KE, Rojo F, She Q-B, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N (2006) mTOR Inhibition Induces Upstream Receptor Tyrosine Kinase Signaling and Activates Akt. Cancer Res 66(3):1500–1508

    Article  PubMed  CAS  Google Scholar 

  71. Carew J et al (2011) Mechanisms of mTOR resistance in cancer therapy. Targ Oncol. doi:10.1007/s11523-011-0167-8

    Google Scholar 

  72. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Janne PA (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316(5827):1039–1043. doi:10.1126/science.1141478

    Article  PubMed  CAS  Google Scholar 

  73. Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B (2005) EGFR Mutation and Resistance of Non–Small-Cell Lung Cancer to Gefitinib. New Eng J Med 352(8):786–792. doi:10.1056/NEJMoa044238

    Article  PubMed  CAS  Google Scholar 

  74. Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, Baccarani M, Cortes J, Cross NCP, Druker BJ, Gabert J, Grimwade D, Hehlmann R, Kamel-Reid S, Lipton JH, Longtine J, Martinelli G, Saglio G, Soverini S, Stock W, Goldman JM (2006) Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 108(1):28–37. doi:10.1182/blood-2006-01-0092

    Article  PubMed  CAS  Google Scholar 

  75. Wymann MP, Bulgarelli-Leva G, Zvelebil MJ, Pirola L, Vanhaesebroeck B, Waterfield MD, Panayotou G (1996) Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol Cell Biol 16(4):1722–1733

    PubMed  CAS  Google Scholar 

  76. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351(Pt 1):95–105

    Article  PubMed  CAS  Google Scholar 

  77. Lempiainen H, Halazonetis TD (2009) Emerging common themes in regulation of PIKKs and PI3Ks. EMBO J 28(20):3067–3073. doi:10.1038/emboj.2009.281

    Article  PubMed  CAS  Google Scholar 

  78. Dennis PB, Fumagalli S, Thomas G (1999) Target of rapamycin (TOR): balancing the opposing forces of protein synthesis and degradation. Curr Opin Gen Dev 9(1):49–54. doi:10.1016/s0959-437x(99)80007-0

    Article  CAS  Google Scholar 

  79. Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4 H-1-benzopyran-4-one (LY294002). J Biol Chem 269(7):5241–5248

    PubMed  CAS  Google Scholar 

  80. Hu L, Hofmann J, Lu Y, Mills GB, Jaffe RB (2002) Inhibition of Phosphatidylinositol 3′’-Kinase Increases Efficacy of Paclitaxel in in Vitro and in Vivo Ovarian Cancer Models. Cancer Res 62(4):1087–1092

    PubMed  CAS  Google Scholar 

  81. Garlich JR, Becker MD, Shelton CF, Qi W, Liu X, Cooke L, Mahadevan D (2010) Phase I Study of Novel Prodrug Dual PI3K/mTOR Inhibitor SF1126 In B-Cell Malignancies. ASH Annu Meet Abstr 116(21):1783

    Google Scholar 

  82. Arcaro A, Wymann MP (1993) Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J 296(2):297–301

    PubMed  CAS  Google Scholar 

  83. Schultz RM, Merriman RL, Andis SL, Bonjouklian R, Grindey GB, Rutherford PG, Gallegos A, Massey K, Powis G (1995) In vitro and in vivo antitumor activity of the phosphatidylinositol-3-kinase inhibitor, wortmannin. Anticancer Res 15(4):1135–1139

    PubMed  CAS  Google Scholar 

  84. Ihle NT, Williams R, Chow S, Chew W, Berggren MI, Paine-Murrieta G, Minion DJ, Halter RJ, Wipf P, Abraham R, Kirkpatrick L, Powis G (2004) Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol Cancer Ther 3(7):763–772

    PubMed  CAS  Google Scholar 

  85. Jimeno A, Herbst RS, Falchook GS, Messersmith WA, Hecker S, Peterson S, Hausman DF, Kurzrock R, Eckhardt SG, Hong DS (2010) Final results from a phase I, dose-escalation study of PX-866, an irreversible, pan-isoform inhibitor of PI3 kinase. ASCO Meet Abstr 28(15_suppl):3089

    Google Scholar 

  86. Burris H, Rodon J, Sharma S, Herbst RS, Tabernero J, Infante JR, Silva A, Demanse D, Hackl W, Baselga J (2010) First-in-human phase I study of the oral PI3K inhibitor BEZ235 in patients (pts) with advanced solid tumors. ASCO Meet Abstr 28(15_suppl):3005

    Google Scholar 

  87. Voliva cF, Pecchi S, Burger M, Nagel T, Schnell C, Fritsch c, Brachmann s, Menezes D, Knapp M, Shoemaker K, Wiesmann M, Huh k, Zaror I, Dorsch M, Sellers WR, Garcia-Echeverria C, Maira M (2011) Abstract 4498: Biological characterization of NVP-BKM120, a novel inhibitor of phosphoinosotide 3-kinase in Phase I/II clinical trials. Cancer Res 70(8 Supplement):4498. doi:10.1158/1538-7445.am10-4498

    Article  Google Scholar 

  88. Maira M, Menezes D, Pecchi S, Shoemaker K, Burger M, Schnell c, Fritsch c, Brachmann S, Nagel T, Sellers WR, Garcia-Echeverria C, Wiesmann M, Voliva cF (2010) NVP-BKM120, a novel inhibitor of phosphoinosotide 3-kinase in Phase I/II clinical trials, shows significant antitumor activity in xenograft and primary tumor models Paper presented at the AACR 101st Annual Meeting

  89. Baselga J, De Jonge MJ, Rodon J, Burris HA, Birle DC, De Buck SS, Demanse D, Ru QC, Goldbrunner M, Bendell JC (2010) A first-in-human phase I study of BKM120, an oral pan-class I PI3K inhibitor, in patients (pts) with advanced solid tumors. ASCO Meet Abstr 28(15_suppl):3003

    Google Scholar 

  90. Repasky GA, Chenette EJ, Der CJ (2004) Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol 14(11):639–647. doi:10.1016/j.tcb.2004.09.014

    Article  PubMed  CAS  Google Scholar 

  91. Wee S, Jagani Z, Xiang KX, Loo A, Dorsch M, Yao Y-M, Sellers WR, Lengauer C, Stegmeier F (2009) PI3K Pathway Activation Mediates Resistance to MEK Inhibitors in KRAS Mutant Cancers. Cancer Res 69(10):4286–4293

    Article  PubMed  CAS  Google Scholar 

  92. Matsuzaki T, Sasaki K, Tanizaki Y, Hata J, Fujimi K, Matsui Y, Sekita A, Suzuki SO, Kanba S, Kiyohara Y, Iwaki T (2010) Insulin resistance is associated with the pathology of Alzheimer disease: the Hisayama study. Neurology 75(9):764–770. doi:10.1212/WNL.0b013e3181eee25f

    Article  PubMed  CAS  Google Scholar 

  93. Bandaru SS, Lin K, Roming SL, Vellipuram R, Harney JP (2010) Effects of PI3K inhibition and low docosahexaenoic acid on cognition and behavior. Phys Beh 100(3):239–244. doi:10.1016/j.physbeh.2009.10.019

    Article  CAS  Google Scholar 

  94. Edelman G, Bedell C, Shapiro G, Pandya SS, Kwak EL, Scheffold C, Nguyen LT, Laird A, Baselga J, Rodon J (2010) A phase I dose-escalation study of XL147 (SAR245408), a PI3K inhibitor administered orally to patients (pts) with advanced malignancies. ASCO Meet Abstr 28(15_suppl):3004

    Google Scholar 

  95. Moldovan C, Soria J, LoRusso P, Guthrie T, Song C, Nguyen LT, Martini J, Infante JR, Burris HA (2010) A phase I safety and pharmacokinetic (PK) study of the PI3K inhibitor XL147 (SAR245408) in combination with erlotinib in patients (pts) with advanced solid tumors. ASCO Meet Abstr 28(15_suppl):3070

    Google Scholar 

  96. Traynor AM, Kurzrock R, Bailey HH, Attia S, Scheffold C, van Leeuwen B, Wu B, Falchook GS, Moulder SL, Wheler J (2010) A phase I safety and pharmacokinetic (PK) study of the PI3K inhibitor XL147 (SAR245408) in combination with paclitaxel (P) and carboplatin (C) in patients (pts) with advanced solid tumors. ASCO Meet Abstr 28(15_suppl):3078

    Google Scholar 

  97. Brana I, LoRusso P, Baselga J, Heath EI, Patnaik A, Gendreau S, Laird A, Papadopoulos K (2010) A phase I dose-escalation study of the safety, pharmacokinetics (PK), and pharmacodynamics of XL765 (SAR245409), a PI3K/TORC1/TORC2 inhibitor administered orally to patients (pts) with advanced malignancies. ASCO Meet Abstr 28(15_suppl):3030

    Google Scholar 

  98. Cohen RB, Janne PA, Engelman JA, Martinez P, Nishida Y, Gendreau S, Wu B, Felip E (2010) A phase I safety and pharmacokinetic (PK) study of PI3K/TORC1/TORC2 inhibitor XL765 (SAR245409) in combination with erlotinib (E) in patients (pts) with advanced solid tumors. ASCO Meet Abstr 28(15_suppl):3015

    Google Scholar 

  99. Nghiemphu PL, Omuro AM, Cloughesy T, Mellinghoff IK, Norden AD, Nguyen LT, Rajangam K, Wen PY (2010) A phase I safety and pharmacokinetic study of XL765 (SAR245409), a novel PI3K/TORC1/TORC2 inhibitor, in combination with temozolomide (TMZ) in patients (pts) with newly diagnosed malignant glioma. ASCO Meet Abstr 28(15_suppl):3085

    Google Scholar 

  100. Raynaud FI, Eccles SA, Patel S, Alix S, Box G, Chuckowree I, Folkes A, Gowan S, De Haven BA, Di Stefano F, Hayes A, Henley AT, Lensun L, Pergl-Wilson G, Robson A, Saghir N, Zhyvoloup A, McDonald E, Sheldrake P, Shuttleworth S, Valenti M, Wan NC, Clarke PA, Workman P (2009) Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol Cancer Ther 8(7):1725–1738

    Article  PubMed  CAS  Google Scholar 

  101. Hoff DDV, LoRusso P, Tibes R, Shapiro G, Weiss GJ, Ware JA, Fredrickson J, Mazina KE, Levy GG, Wagner AJ (2010) A first-in-human phase I study to evaluate the pan-PI3K inhibitor GDC-0941 administered QD or BID in patients with advanced solid tumors. ASCO Meet Abstr 28(15_suppl):2541

    Google Scholar 

  102. Baird RD, Kristeleit RS, Sarker D, Olmos D, Sandhu SK, Yan Y, Koeppen H, Levy GG, Jin J, Bono JSD (2010) A phase I study evaluating the pharmacokinetics (PK) and pharmacodynamics (PD) of the oral pan-phosphoinositide-3 kinase (PI3K) inhibitor GDC-0941. ASCO Meet Abstr 28(15_suppl):2613

    Google Scholar 

  103. Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ, Higashi K, Volinia S, Downward J, Waterfield MD (1997) p110δ, a novel phosphoinositide 3-kinase in leukocytes. Proc Nat Acad Sci USA 94(9):4330–4335

    Article  PubMed  CAS  Google Scholar 

  104. Herman SEM, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM, Jones J, Andritsos L, Puri KD, Lannutti BJ, Giese NA, Zhang X, Wei L, Byrd JC, Johnson AJ (2010) Phosphatidylinositol 3-kinase-{delta} inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 116(12):2078–2088

    Article  PubMed  CAS  Google Scholar 

  105. Furman RR, Byrd JC, Brown JR, Coutre SE, Benson DM Jr, Wagner-Johnston ND, Flinn IW, Kahl BS, Spurgeon SE, Lannutti B, Giese NA, Webb HK, Ulrich RG, Peterman S, Holes LM, Yu AS (2010) CAL-101, An Isoform-Selective Inhibitor of Phosphatidylinositol 3-Kinase P110{delta}, Demonstrates Clinical Activity and Pharmacodynamic Effects In Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia. ASH Annu Meet Abstr 116(21):55

    Google Scholar 

  106. Kahl B, Byrd JC, Flinn IW, Wagner-Johnston N, Spurgeon S, Benson DM Jr, Furman RR, Brown JR, Coutre S, Lannutti B, Giese NA, Ulrich RG, Webb HK, Peterman S, Holes L, Yu AS (2010) Clinical Safety and Activity In a Phase 1 Study of CAL-101, An Isoform-Selective Inhibitor of Phosphatidylinositol 3-Kinase P110{delta}, In Patients with Relapsed or Refractory Non-Hodgkin Lymphoma. ASH Annu Meet Abstr 116(21):1777

    Google Scholar 

  107. Ferry DR, Smith A, Malkhandi J, Fyfe DW, deTakats PG, Anderson D, Baker J, Kerr DJ (1996) Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 2(4):659–668

    PubMed  CAS  Google Scholar 

  108. Kong D, Dan S, Yamazaki K, Yamori T (2010) Inhibition profiles of phosphatidylinositol 3-kinase inhibitors against PI3K superfamily and human cancer cell line panel JFCR39. Eur J Cancer 46(6):1111–1121. doi:10.1016/j.ejca.2010.01.005

    Article  PubMed  CAS  Google Scholar 

  109. Dolly S, Wagner AJ, Bendell JC, Yan Y, Ware JA, Mazina KE, Holden SN, Derynck MK, Bono JSD, H. A. Burris I (2010) A first-in-human, phase l study to evaluate the dual PI3K/mTOR inhibitor GDC-0980 administered QD in patients with advanced solid tumors or non-Hodgkin’s lymphoma. ASCO Meet Abstr 28(15_suppl ):3079

  110. Cheng H, Bagrodia S, Bailey S, Edwards M, Hoffman J, Hu Q, Kania R, Knighton DR, Marx MA, Ninkovic S, Sun S, Zhang E (2010) Discovery of the highly potent PI3K/mTOR dual inhibitor PF-04691502 through structure based drug design. Med Chem Commun 1(2):139–144

    Article  CAS  Google Scholar 

  111. Knight SD, Adams ND, Burgess JL, Chaudhari AM, Darcy MG, Donatelli CA, Luengo JI, Newlander KA, Parrish CA, Ridgers LH, Sarpong MA, Schmidt SJ, Van Aller GS, Carson JD, Diamond MA, Elkins PA, Gardiner CM, Garver E, Gilbert SA, Gontarek RR, Jackson JR, Kershner KL, Luo L, Raha K, Sherk CS, Sung C-M, Sutton D, Tummino PJ, Wegrzyn RJ, Auger KR, Dhanak D (2010) Discovery of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of Rapamycin. ACS Med Chem Lett 1(1):39–43. doi:10.1021/ml900028r

    Article  CAS  Google Scholar 

  112. Kong D, S-i Y, Yamori T (2009) Effect of ZSTK474, a Novel Phosphatidylinositol 3-Kinase Inhibitor, on DNA-Dependent Protein Kinase. Biol Pharm Bull 32(2):297–300

    Article  PubMed  CAS  Google Scholar 

  113. van Blitterswijk WJ, Hilkmann H, Storme GA (1987) Accumulation of an alkyl lysophospholipid in tumor cell membranes affects membrane fluidity and tumor cell invasion. Lipids 22(11):820–823

    Article  PubMed  Google Scholar 

  114. Ruiter GA, Zerp SF, Bartelink H, van Blitterswijk WJ, Verheij M (2003) Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway. Anticancer Drugs 14(2):167–173

    Article  PubMed  CAS  Google Scholar 

  115. Sundar S, Jha TK, Thakur CP, Engel J, Sindermann H, Fischer C, Junge K, Bryceson A, Berman J (2002) Oral Miltefosine for Indian Visceral Leishmaniasis. New Eng J Med 347(22):1739–1746. doi:10.1056/NEJMoa021556

    Article  PubMed  CAS  Google Scholar 

  116. Leonard R, Hardy J, van Tienhoven G, Houston S, Simmonds P, David M, Mansi J (2001) Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial of 6% Miltefosine Solution, a Topical Chemotherapy in Cutaneous Metastases From Breast Cancer. J Clin Oncol 19(21):4150–4159

    PubMed  CAS  Google Scholar 

  117. Planting AS, Stoter G, Verweij J (1993) Phase II study of daily oral miltefosine (hexadecylphosphocholine) in advanced colorectal cancer. Eur J Cancer 29A(4):518–519

    Article  PubMed  CAS  Google Scholar 

  118. Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK (2003) Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2(11):1093–1103

    PubMed  CAS  Google Scholar 

  119. Argiris A, Cohen E, Karrison T, Esparaz B, Mauer A, Ansari R, Wong S, Lu Y, Pins M, Dancey J, Vokes E (2006) A phase II trial of perifosine, an oral alkylphospholipid, in recurrent or metastatic head and neck cancer. Cancer Biol Ther 5(7):766–770

    Article  PubMed  CAS  Google Scholar 

  120. Ernst D, Eisenhauer E, Wainman N, Davis M, Lohmann R, Baetz T, Belanger K, Smylie M (2005) Phase II Study of Perifosine in Previously Untreated Patients with Metastatic Melanoma. Investig New Drugs 23(6):569–575. doi:10.1007/s10637-005-1157-4

    Article  CAS  Google Scholar 

  121. Leighl N, Dent S, Clemons M, Vandenberg T, Tozer R, Warr D, Crump R, Hedley D, Pond G, Dancey J, Moore M (2008) A Phase 2 study of perifosine in advanced or metastatic breast cancer. Breast Cancer Res Treat 108(1):87–92. doi:10.1007/s10549-007-9584-x

    Article  PubMed  CAS  Google Scholar 

  122. Friedman DR, Davis PH, Lanasa MC, Moore JO, Gockerman JP, Nelson T, Bond KM, Jiang N, Davis ED, Allgood SD, Chen Y, Sportelli P, Weinberg JB (2010) Pre-Clinical and Interim Results of a Phase II Trial of Perifosine In Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia (CLL). ASH Annu Meet Abstr 116(21):1842

    Google Scholar 

  123. Bailey HH, Mahoney MR, Ettinger DS, Maples WJ, Fracasso PM, Traynor AM, Erlichman C, Okuno SH (2006) Phase II study of daily oral perifosine in patients with advanced soft tissue sarcoma. Cancer 107(10):2462–2467. doi:10.1002/cncr.22308

    Article  PubMed  CAS  Google Scholar 

  124. Ghobrial IM, Roccaro A, Hong F, Weller E, Rubin N, Leduc R, Rourke M, Chuma S, Sacco A, Jia X, Azab F, Azab AK, Rodig S, Warren D, Harris B, Varticovski L, Sportelli P, Leleu X, Anderson KC, Richardson PG (2010) Clinical and Translational Studies of a Phase II Trial of the Novel Oral Akt Inhibitor Perifosine in Relapsed or Relapsed/Refractory Waldenström’s Macroglobulinemia. Clin Cancer Res 16(3):1033–1041

    Article  PubMed  CAS  Google Scholar 

  125. Yang L, Dan HC, Sun M, Liu Q, Sun XM, Feldman RI, Hamilton AD, Polokoff M, Nicosia SV, Herlyn M, Sebti SM, Cheng JQ (2004) Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res 64(13):4394–4399. doi:10.1158/0008-5472.CAN-04-0343

    Article  PubMed  CAS  Google Scholar 

  126. Feun LG, Blessing JA, Barrett RJ, Hanjani P (1993) A phase II trial of tricyclic nucleoside phosphate in patients with advanced squamous cell carcinoma of the cervix. A Gynecologic Oncology Group Study. Am J Clin Oncol 16(6):506–508

    Article  PubMed  CAS  Google Scholar 

  127. TA Yap AP, Fearen I, Olmos D, Papadopoulos K, Tunariu N, Sullivan D, Yan L, De Bono JS, Tolcher AW (2010) First-in-class phase I trial of a selective Akt inhibitor, MK2206 (MK), evaluating alternate day (QOD) and once weekly (QW) doses in advanced cancer patients (pts) with evidence of target modulation and antitumor activity. ASCO Annu Meet 28(15_suppl):3009

  128. Yan L (2009) MK-2206: A potent oral allosteric AKT inhibitor. AACR Annual Meeting:DDT01-01

  129. Mittelman A, Casper ES, Godwin TA, Cassidy C, Young CW (1983) Phase I study of tricyclic nucleoside phosphate. Cancer Treat Rep 67(2):159–162

    PubMed  CAS  Google Scholar 

  130. Van Ummersen L, Binger K, Volkman J, Marnocha R, Tutsch K, Kolesar J, Arzoomanian R, Alberti D, Wilding G (2004) A Phase I Trial of Perifosine (NSC 639966) on a Loading Dose/Maintenance Dose Schedule in Patients with Advanced Cancer. Clin Cancer Res 10(22):7450–7456

    Article  PubMed  Google Scholar 

  131. Rhodes N, Heerding DA, Duckett DR, Eberwein DJ, Knick VB, Lansing TJ, McConnell RT, Gilmer TM, Zhang S-Y, Robell K, Kahana JA, Geske RS, Kleymenova EV, Choudhry AE, Lai Z, Leber JD, Minthorn EA, Strum SL, Wood ER, Huang PS, Copeland RA, Kumar R (2008) Characterization of an Akt Kinase Inhibitor with Potent Pharmacodynamic and Antitumor Activity. Cancer Res 68(7):2366–2374

    Article  PubMed  CAS  Google Scholar 

  132. Arico S, Pattingre S, Bauvy C, Gane P, Barbat A, Codogno P, Ogier-Denis E (2002) Celecoxib Induces Apoptosis by Inhibiting 3-Phosphoinositide-dependent Protein Kinase-1 Activity in the Human Colon Cancer HT-29 Cell Line. J Biol Chem 277(31):27613–27621

    Article  PubMed  CAS  Google Scholar 

  133. Gadgeel SM, Ruckdeschel JC, Heath EI, Heilbrun LK, Venkatramanamoorthy R, Wozniak A (2007) Phase II Study of Gefitinib, an Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR-TKI), and Celecoxib, a Cyclooxygenase-2 (COX-2) Inhibitor, in Patients with Platinum Refractory Non-small Cell Lung Cancer (NSCLC). J Thorac Oncol 2(4):299–305

    Article  PubMed  Google Scholar 

  134. Pierga J-Y, Delaloge S, Espié M, Brain E, Sigal-Zafrani B, Mathieu M-C, Bertheau P, Guinebretière J, Spielmann M, Savignoni A, Marty M (2010) A multicenter randomized phase II study of sequential epirubicin/cyclophosphamide followed by docetaxel with or without celecoxib or trastuzumab according to HER2 status, as primary chemotherapy for localized invasive breast cancer patients. Breast Cancer Res Treat 122(2):429–437. doi:10.1007/s10549-010-0939-3

    Article  PubMed  CAS  Google Scholar 

  135. Zhu J, Huang JW, Tseng PH, Yang YT, Fowble J, Shiau CW, Shaw YJ, Kulp SK, Chen CS (2004) From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res 64(12):4309–4318. doi:10.1158/0008-5472.CAN-03-4063

    Article  PubMed  CAS  Google Scholar 

  136. Zhang S, Suvannasankha A, Crean CD, White VL, Johnson A, Chen C-S, Farag SS (2007) OSU-03012, a Novel Celecoxib Derivative, Is Cytotoxic to Myeloma Cells and Acts through Multiple Mechanisms. Clin Cancer Res 13(16):4750–4758

    Article  PubMed  CAS  Google Scholar 

  137. Johnson AJ, Smith LL, Zhu J, Heerema NA, Jefferson S, Mone A, Grever M, Chen CS, Byrd JC (2005) A novel celecoxib derivative, OSU03012, induces cytotoxicity in primary CLL cells and transformed B-cell lymphoma cell line via a caspase- and Bcl-2-independent mechanism. Blood 105(6):2504–2509. doi:10.1182/blood-2004-05-1957

    Article  PubMed  CAS  Google Scholar 

  138. McCubrey JA, Lahair MM, Franklin RA (2006) OSU-03012 in the treatment of glioblastoma. Mol Pharmacol 70(2):437–439. doi:10.1124/mol.106.026252

    Article  PubMed  CAS  Google Scholar 

  139. Sato S, Fujita N, Tsuruo T (2002) Interference with PDK1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine). Oncogene 21(11):1727–1738. doi:10.1038/sj.onc.1205225

    Article  PubMed  CAS  Google Scholar 

  140. Sausville EA, Arbuck SG, Messmann R, Headlee D, Bauer KS, Lush RM, Murgo A, Figg WD, Lahusen T, Jaken S, X-x J, Roberge M, Fuse E, Kuwabara T, Senderowicz AM (2001) Phase I Trial of 72-Hour Continuous Infusion UCN-01 in Patients With Refractory Neoplasms. J Clin Oncol 19(8):2319–2333

    PubMed  CAS  Google Scholar 

  141. Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O’Connor PM, Piwnica-Worms H (2000) The Chk1 Protein Kinase and the Cdc25C Regulatory Pathways Are Targets of the Anticancer Agent UCN-01. J Biol Chem 275(8):5600–5605

    Article  PubMed  CAS  Google Scholar 

  142. Feldman RI, Wu JM, Polokoff MA, Kochanny MJ, Dinter H, Zhu D, Biroc SL, Alicke B, Bryant J, Yuan S, Buckman BO, Lentz D, Ferrer M, Whitlow M, Adler M, Finster S, Chang Z, Arnaiz DO (2005) Novel Small Molecule Inhibitors of 3-Phosphoinositide-dependent Kinase-1. J Biol Chem 280(20):19867–19874. doi:10.1074/jbc.M501367200

    Article  PubMed  CAS  Google Scholar 

  143. Najafov A, Sommer EM, Axten JM, Deyoung MP, Alessi DR (2010) Characterization of GSK2334470, a novel and highly specific inhibitor of PDK1. Biochem J 433(2):357–369. doi:10.1042/BJ20101732

    Article  PubMed  CAS  Google Scholar 

  144. Weisberg E, Banerji L, Wright RD, Barrett R, Ray A, Moreno D, Catley L, Jiang J, Hall-Meyers E, Sauveur-Michel M, Stone R, Galinsky I, Fox E, Kung AL, Griffin JD (2008) Potentiation of antileukemic therapies by the dual PI3K/PDK-1 inhibitor, BAG956: effects on BCR-ABL- and mutant FLT3-expressing cells. Blood 111(7):3723–3734. doi:10.1182/blood-2007-09-114454

    Article  PubMed  CAS  Google Scholar 

  145. Gopalsamy A, Shi M, Boschelli DH, Williamson R, Olland A, Hu Y, Krishnamurthy G, Han X, Arndt K, Guo B (2007) Discovery of Dibenzo[c, f][2, 7]naphthyridines as Potent and Selective 3-Phosphoinositide-Dependent Kinase-1 Inhibitors. J Med Chem 50(23):5547–5549. doi:10.1021/jm070851i

    Article  PubMed  CAS  Google Scholar 

  146. Janku F, Tsimberidou AM, Garrido-Laguna I, Hong DS, Naing A, Falchook GS, Wheler JJ, Fu S, Piha-Paul SA, Kurzrock R (2010) PIK3CA, KRAS, and BRAF mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. ASCO Meet Abstr 28(15_suppl):2583

    Google Scholar 

Download references

Conflict of interest statement

Although the authors have not received and will not receive benefits for personal or professional use from a commercial party related directly or indirectly to the subject of this manuscript, benefits have been or will be received but are directed solely to a research fund, foundation, educational institution or other non-profit organization with which one or more of the authors is(are) associated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia LoRusso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogita, S., LoRusso, P. Targeting phosphatidylinositol 3 kinase (PI3K)-Akt beyond rapalogs. Targ Oncol 6, 103–117 (2011). https://doi.org/10.1007/s11523-011-0176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-011-0176-7

Keywords

Navigation