Skip to main content
Log in

Aging and cancer: can mTOR inhibitors kill two birds with one drug?

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

The main risk factor for a number of diseases, including cancer, is aging. By delaying the effects of aging, many years of research indicate that diseases associated with aging are reduced by prolongevity interventions such as reductions in caloric intake and mice genetically deficient for growth factors. Although studies of dietary and growth factor restriction have been highly informative regarding the aging process, they are both unrealistic for human application. Recent preclinical results with a pharmacological prolongevity agent (rapamycin) provide a proof-of-concept that such an approach is feasible in human populations. Exactly how rapamycin works to extend lifespan is under increasingly intense investigation. In addition, these studies underscore the critical role that the intracellular target of rapamycin (TOR) plays in one of the deepest mysteries of life, aging. How age-associated diseases interface with TOR and its signaling systems, and the tremendous opportunities for discovery of new drugs that target both aging and its associated diseases is one of the most exciting areas of research currently being conducted in this new era of aging research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kirkwood TB (2008) Gerontology: healthy old age. Nature 455(7214):739–740. doi:10.1038/455739a

    Article  PubMed  CAS  Google Scholar 

  2. Juckett DA (2010) What determines age-related disease: do we know all the right questions? Age (Dordr) 32(2):155–160. doi:10.1007/s11357-009-9120-5

    Article  Google Scholar 

  3. He W, Sengupta M, Velkoff V, and, DeBarros K (2005) 65+ in the United States: 2005. Current Population Reports. Document number P23–209, US Census Bureau

  4. Population age 65 and over and age 85 and over, selected years 1900–2008 and projected 2010–2050. (2010) US Census Bureau. http://www.agingstats.gov/Agingstatsdotnet/Main_Site/Data/2010_Documents/Population.aspx. Accessed 22 Feb. 2011

  5. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249. doi:10.3322/caac.20006

    Article  PubMed  Google Scholar 

  6. Altekruse SF, Kosary CL, Krapcho M, Neyman N, Aminou R, Waldron W, Ruhl J, Howlader N, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Cronin K, Chen HS, Feuer EJ, Stinchcomb DG, Edwards BK (2010) SEER Cancer Statistics Review 1975–2007. National Cancer Institute. http://seer.cancer.gov/csr/1975_2007//, based on November 2009 SEER data submission, posted to the SEER web site, 2010

  7. Pal SK, Katheria V, Hurria A (2010) Evaluating the older patient with cancer: understanding frailty and the geriatric assessment. CA Cancer J Clin 60(2):120–132. doi:10.3322/caac.20059

    Article  PubMed  Google Scholar 

  8. Sharp ZD, Strong R (2010) The role of mTOR signaling in controlling mammalian lifespan: what a fungicide teaches us about longevity. J Gerontol A Biol Sci Med Sci 6:580–589

    Google Scholar 

  9. Sharp ZD (2011) Aging and TOR: interwoven in the fabric of life. Cell Mol Life Sci 68(4):587–597. doi:10.1007/s00018-010-0542-0

    Article  PubMed  CAS  Google Scholar 

  10. Liang H, Masoro EJ, Nelson JF, Strong R, McMahan CA, Richardson A (2003) Genetic mouse models of extended lifespan. Exp Gerontol 38(11–12):1353–1364

    Article  PubMed  CAS  Google Scholar 

  11. Ladiges W, Van Remmen H, Strong R, Ikeno Y, Treuting P, Rabinovitch P, Richardson A (2009) Lifespan extension in genetically modified mice. Aging Cell 8(4):346–352. doi:10.1111/j.1474-9726.2009.00491.x

    Article  PubMed  CAS  Google Scholar 

  12. Weindruch R, Coleman RJ, Pérez V, Richardson A (2008) How does caloric restriction increase the longevity of mammals? In: Gurante LP, Partidge L, Wallace DC (eds) Molecular biology of aging. Cold Spring Harbor Laboratory Press, pp 409–426

  13. Sharp ZD, Bartke A (2005) Evidence for down-regulation of phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR)-dependent translation regulatory signaling pathways in Ames dwarf mice. J Gerontol A Biol Sci Med Sci 60(3):293–300

    PubMed  Google Scholar 

  14. Hsieh CC, Papaconstantinou J (2004) Akt/PKB and p38 MAPK signaling, translational initiation and longevity in Snell dwarf mouse livers. Mech Ageing Dev 125(10–11):785–798

    Article  PubMed  CAS  Google Scholar 

  15. Ikeno Y, Bronson RT, Hubbard GB, Lee S, Bartke A (2003) Delayed occurrence of fatal neoplastic diseases in Ames dwarf mice: correlation to extended longevity. J Gerontol A Biol Sci Med Sci 58(4):B291–B296

    Google Scholar 

  16. Ikeno Y, Hubbard GB, Lee S, Cortez LA, Lew CM, Webb CR, Berryman DE, List EO, Kopchick JJ, Bartke A (2009) Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci 64A(5):522–529. doi:10.1093/gerona/glp017

    CAS  Google Scholar 

  17. Colbert LH, Mai V, Tooze JA, Perkins SN, Berrigan D, Hursting SD (2006) Negative energy balance induced by voluntary wheel running inhibits polyp development in APCMin mice. Carcinogenesis 27(10):2103–2107. doi:10.1093/carcin/bgl056

    Article  PubMed  CAS  Google Scholar 

  18. Hursting SD, Lavigne JA, Berrigan D, Perkins SN, Barrett JC (2003) Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu Rev Med 54:131–152. doi:10.1093/carcin/bgp280

    Article  PubMed  CAS  Google Scholar 

  19. Weindruch R, Walford RL (1982) Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 215(4538):1415–1418

    Article  PubMed  CAS  Google Scholar 

  20. Shimokawa I, Yu BP, Higami Y, Ikeda T, Masoro EJ (1993) Dietary restriction retards onset but not progression of leukemia in male F344 rats. J Gerontol 48(2):B68–B73

    PubMed  CAS  Google Scholar 

  21. Higami Y, Yu BP, Shimokawa I, Bertrand H, Hubbard GB, Masoro EJ (1995) Antitumor action of dietary restriction is lesion-dependent in male Fischer 344 rats. J Gerontol A Biol Sci Med Sci 50(2):B72–B77

    PubMed  CAS  Google Scholar 

  22. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325(5937):201–204. doi:10.1126/science.1173635

    Article  PubMed  CAS  Google Scholar 

  23. Hursting SD, Smith SM, Lashinger LM, Harvey AE, Perkins SN (2010) Calories and carcinogenesis: lessons learned from 30 years of calorie restriction research. Carcinogenesis 31(1):83–89. doi:10.1093/carcin/bgp280

    Article  PubMed  CAS  Google Scholar 

  24. Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, Nguyen T, Martin CK, Volaufova J, Most MM, Greenway FL, Smith SR, Deutsch WA, Williamson DA, Ravussin E, Team ftPC (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals. JAMA 295(13):1539–1548. doi:10.1001/jama.295.13.1539

    Article  PubMed  CAS  Google Scholar 

  25. Fontana L, Klein S (2007) Aging, adiposity, and calorie restriction. JAMA 297(9):986–994. doi:10.1001/jama.297.9.986

    Article  PubMed  CAS  Google Scholar 

  26. Fontana L, Meyer TE, Klein S, Holloszy JO (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Nat Acad Sci USA 101(17):6659–6663. doi:10.1073/pnas.0308291101

    Article  PubMed  CAS  Google Scholar 

  27. Rochon J, Bales CW, Ravussin E, Redman LM, Holloszy JO, Racette SB, Roberts SB, Das SK, Romashkan S, Galan KM, Hadley EC, Kraus WE, Group ftCS (2011) Design and conduct of the CALERIE Study: comprehensive assessment of the long-term effects of reducing intake of energy. J Gerontol A Biol Sci Med Sci 66A(1):97–108

    Google Scholar 

  28. Howell A, Chapman M, Harvie M (2009) Energy restriction for breast cancer prevention. Recent Results Cancer Res 181:97–111

    Article  PubMed  CAS  Google Scholar 

  29. Duffy P, Feuers R, Pipkin J, Berg T, Leal L, Turturro A, Hart R (1995) The effect of dietary restriction and aging on the physiological response of rodents to drugs. In: Hart R, Neuman D, Robertson R (eds) Dietary restriction: implications for the design and interpretation of toxicity and carcinogenecity studies. ILSI, Washington, pp 127–140

    Google Scholar 

  30. Manjgaladze M, Chen S, Frame LT, Seng JE, Duffy PH, Feuers RJ, Hart RW, Leakey JE (1993) Effects of caloric restriction on rodent drug and carcinogen metabolizing enzymes: implications for mutagenesis and cancer. Mutat Res 295(4–6):201–222

    PubMed  CAS  Google Scholar 

  31. Bokov AF, Lindsey ML, Khodr C, Sabia MR, Richardson A (2009) Long-lived Ames dwarf mice are resistant to chemical stressors. J Gerontol A Biol Sci Med Sci 64(8):819–827. doi:10.1093/gerona/glp052

    PubMed  Google Scholar 

  32. Hursting SD, Perkins SN, Phang JM (1994) Calorie restriction delays spontaneous tumorigenesis in p53-knockout transgenic mice. Proc Natl Acad Sci USA 91(15):7036–7040

    Article  PubMed  CAS  Google Scholar 

  33. Hursting SD, Perkins SN, Brown CC, Haines DC, Phang JM (1997) Calorie restriction induces a p53-independent delay of spontaneous carcinogenesis in p53-deficient and wild-type mice. Cancer Res 57(14):2843–2846

    PubMed  CAS  Google Scholar 

  34. Mai V, Colbert LH, Berrigan D, Perkins SN, Pfeiffer R, Lavigne JA, Lanza E, Haines DC, Schatzkin A, Hursting SD (2003) Calorie restriction and diet composition modulate spontaneous intestinal tumorigenesis in Apc(Min) mice through different mechanisms. Cancer Res 63(8):1752–1755

    PubMed  CAS  Google Scholar 

  35. Kalaany NY, Sabatini DM (2009) Tumors with PI3K activation are resistant to dietary restriction. Nature 458(7239):725–731. doi:10.1038/nature07782

    Article  PubMed  CAS  Google Scholar 

  36. Sharp ZD, Lee WH, Nikitin AY, Flesken-Nikitin A, Ikeno Y, Reddick R, Richardson AG, Nelson JF (2003) Minimal effects of dietary restriction on neuroendocrine carcinogenesis in Rb+/− mice. Carcinogenesis 24(2):179–183

    Article  PubMed  CAS  Google Scholar 

  37. Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK (2009) The TOR pathway comes of age. Biochim Biophy Acta (BBA) Gen Subj 1790(10):1067–1074

    Article  CAS  Google Scholar 

  38. Hertweck M, Gobel C, Baumeister R (2004) C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and lifespan. Dev Cell 6(4):577–588

    Article  PubMed  CAS  Google Scholar 

  39. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426(6967):620

    Article  PubMed  CAS  Google Scholar 

  40. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14(10):885–890

    Article  PubMed  CAS  Google Scholar 

  41. Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, Benzer S, Kapahi P (2009) 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139(1):149–160

    Article  PubMed  CAS  Google Scholar 

  42. Kaeberlein M (2010) Lessons on longevity from budding yeast. Nature 464(7288):513–519

    Article  PubMed  CAS  Google Scholar 

  43. Syntichaki P, Troulinaki K, Tavernarakis N (2007) eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445(7130):922–926

    Article  PubMed  CAS  Google Scholar 

  44. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745. doi:10.1016/j.cell.2009.01.042

    Article  PubMed  CAS  Google Scholar 

  45. Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6(1):111–119

    Article  PubMed  CAS  Google Scholar 

  46. Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19(13):1544–1555. doi:10.1101/gad.1308205

    Article  PubMed  CAS  Google Scholar 

  47. Selman C, Tullet JMA, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F, Woods A, Robinson ICA, Schuster E, Batterham RL, Kozma SC, Thomas G, Carling D, Okkenhaug K, Thornton JM, Partridge L, Gems D, Withers DJ (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian lifespan. Science 326(5949):140–144. doi:10.1126/science.1177221

    Article  PubMed  CAS  Google Scholar 

  48. Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN (1996) TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7(1):25–42

    PubMed  CAS  Google Scholar 

  49. Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological lifespan in yeast by decreased TOR pathway signaling. Genes Dev 20(2):174–184

    Article  PubMed  CAS  Google Scholar 

  50. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L (2010) Mechanisms of lifespan extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11(1):35–46

    Article  PubMed  CAS  Google Scholar 

  51. Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by†nutrients, growth factors, and stress. Mol Cell 40(2):310–322

    Article  PubMed  CAS  Google Scholar 

  52. Zoncu R, Efeyan A, Sabatini DM (2010) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35. doi:10.1038/nrm3025

    Article  PubMed  CAS  Google Scholar 

  53. Kalender A, Selvaraj A, Kim SY, Gulati P, BrûlÈ S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, Marette A, Kozma SC, Thomas G (2010) Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 11(5):390–401

    Article  PubMed  CAS  Google Scholar 

  54. Anisimov VN, Egormin PA, Piskunova TS, Popovich IG, Tyndyk ML, Yurova MN, Zabezhinski MA, Anikin IV, Karkach AS, Romanyukha AA (2010) Metformin extends lifespan of HER-2/neu transgenic mice and in combination with melatonin inhibits growth of transplantable tumors in vivo. Cell Cycle 9(1):188–197

    Article  PubMed  CAS  Google Scholar 

  55. Nadon NL, Strong R, Miller RA, Nelson J, Javors M, Sharp ZD, Peralba JM, Harrison DE (2008) Design of aging intervention studies: the NIA interventions testing program. AGE 30(4):187–199. doi:10.1007/s11357-008-9048-1

    Article  PubMed  CAS  Google Scholar 

  56. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395. doi:10.1038/nature08221

    PubMed  CAS  Google Scholar 

  57. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R (2010) Rapamycin, but not resveratrol or simvastatin, extends lifespan of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 66(2):191–201. doi:10.1093/gerona/glq178

    PubMed  Google Scholar 

  58. Wang X, Proud CG (2010) mTORC1 signaling: what we still don’t know. J Mol Cell Biol. doi:10.1093/jmcb/mjq038

    Google Scholar 

  59. Yip CK, Murata K, Walz T, Sabatini DM, Kang SA (2010) Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell 38(5):768–774

    Article  PubMed  CAS  Google Scholar 

  60. Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J (2008) Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci USA 105(45):17414–17419. doi:10.1073/pnas.0809136105

    Article  PubMed  CAS  Google Scholar 

  61. Korner A (1965) Growth hormone effects on RNA and protein synthesis in liver. J Cell Physiol 66(Suppl 1):153–162. doi:10.1002/jcp.1030660414

    PubMed  CAS  Google Scholar 

  62. van Buul-Offers S, Van den Brande JL (1982) Cellular growth in organs of dwarf mice during treatment with growth hormone, thyroxine and plasma fractions containing somatomedin activity. Acta Endocrinol (Copenh) 99(1):150–160

    Google Scholar 

  63. Bates PC, Holder AT (1988) The anabolic actions of growth hormone and thyroxine on protein metabolism in Snell dwarf and normal mice. J Endocrinol 119(1):31–41

    Article  PubMed  CAS  Google Scholar 

  64. Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, Dang N, Johnston ED, Oakes JA, Tchao BN, Pak DN, Fields S, Kennedy BK, Kaeberlein M (2008) Yeast lifespan extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell 133(2):292–302. doi:10.1016/j.cell.2008.02.037

    Article  PubMed  CAS  Google Scholar 

  65. Giannakou ME, Goss M, Partridge L (2008) Role of dFOXO in lifespan extension by dietary restriction in Drosophila melanogaster: not required, but its activity modulates the response. Aging Cell 7(2):187–198

    Article  PubMed  CAS  Google Scholar 

  66. Mellet J (1973) Etude de l’effectif ribosomique du foie chez la souris normale et chez la souris naine. Biochimie 55(2):189–194

    Article  PubMed  CAS  Google Scholar 

  67. Koga H, Kaushik S, Cuervo AM (2010) Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev. doi:10.1016/j.arr.2010.02.001

    PubMed  Google Scholar 

  68. Madeo F, Tavernarakis N, Kroemer G (2010) Can autophagy promote longevity? Nat Cell Biol 12(9):842–846

    Article  PubMed  CAS  Google Scholar 

  69. Salminen A, Kaarniranta K (2009) Regulation of the aging process by autophagy. Trends Mol Med 15(5):217–224

    Article  PubMed  CAS  Google Scholar 

  70. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4(2):e24. doi:10.1371/journal.pgen.0040024

    Article  PubMed  CAS  Google Scholar 

  71. Jia K, Levine B (2007) Autophagy is required for dietary restriction-mediated lifespan extension in C. elegans. Autophagy 3(6):597–599

    PubMed  Google Scholar 

  72. Donati A, Recchia G, Cavallini G, Bergamini E (2008) Effect of aging and anti-aging caloric restriction on the endocrine regulation of rat liver autophagy. J Gerontol A Biol Sci Med Sci 63(6):550–555. doi:63/6/550

    PubMed  Google Scholar 

  73. Cuervo AM (2008) Calorie restriction and aging: the ultimate “cleansing diet”. J Gerontol A Biol Sci Med Sci 63(6):547–549

    PubMed  Google Scholar 

  74. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS ONE 5(4):e9979. doi:10.1371/journal.pone.0009979

    Article  PubMed  CAS  Google Scholar 

  75. Alvers AL, Fishwick LK, Wood MS, Hu D, Chung HS, Dunn WA Jr, Aris JP (2009) Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell 8(4):353–369

    Article  PubMed  CAS  Google Scholar 

  76. Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450. doi:10.1146/annurev.micro.59.031805.133833

    Article  PubMed  CAS  Google Scholar 

  77. Cherkasova VA, Hinnebusch AG (2003) Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev 17(7):859–872. doi:10.1101/gad.1069003

    Article  PubMed  CAS  Google Scholar 

  78. Kubota H, Obata T, Ota K, Sasaki T, Ito T (2003) Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 alpha kinase GCN2. J Biol Chem 278(23):20457–20460. doi:10.1074/jbc.C300133200

    Article  PubMed  CAS  Google Scholar 

  79. Valenzuela L, Aranda C, Gonzalez A (2001) TOR modulates GCN4-dependent expression of genes turned on by nitrogen limitation. J Bacteriol 183(7):2331–2334. doi:10.1128/JB.183.7.2331-2334.2001

    Article  PubMed  CAS  Google Scholar 

  80. Zhao Y, Sohn JH, Warner JR (2003) Autoregulation in the biosynthesis of ribosomes. Mol Cell Biol 23(2):699–707

    Article  PubMed  CAS  Google Scholar 

  81. Miyoshi K, Tsujii R, Yoshida H, Maki Y, Wada A, Matsui Y, Toh EA, Mizuta K (2002) Normal assembly of 60S ribosomal subunits is required for the signaling in response to a secretory defect in Saccharomyces cerevisiae. J Biol Chem 277(21):18334–18339. doi:10.1074/jbc.M201667200

    Article  PubMed  CAS  Google Scholar 

  82. Cristofalo VJ, Pignolo RJ (1993) Replicative senescence of human fibroblast-like cells in culture. Physiol Rev 73(3):617–638

    PubMed  CAS  Google Scholar 

  83. Fingar DC, Salama S, Tsou C, Harlow E, Blenis J (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16(12):1472–1487

    Article  PubMed  CAS  Google Scholar 

  84. Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103(2):253–262

    Article  PubMed  CAS  Google Scholar 

  85. Blagosklonny MV (2006) Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle 5(18):2087–2102

    Article  PubMed  CAS  Google Scholar 

  86. Demidenko ZN, Korotchkina LG, Gudkov AV, Blagosklonny MV (2010) Paradoxical suppression of cellular senescence by p53. Proc Natl Acad Sci 107(21):9660–9664. doi:10.1073/pnas.1002298107

    Article  PubMed  CAS  Google Scholar 

  87. Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS (2009) mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 5(3):279–289

    Article  PubMed  CAS  Google Scholar 

  88. Chen C, Liu Y, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2(98):ra75. doi:10.1126/scisignal.2000559

    Article  PubMed  Google Scholar 

  89. Freund A, Orjalo AV, Desprez P-Y, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16(5):238–246

    Article  PubMed  CAS  Google Scholar 

  90. Fontana L, Partridge L, Longo VD (2010) Extending healthy lifespan—from yeast to humans. Science 328(5976):321–326. doi:10.1126/science.1172539

    Article  PubMed  CAS  Google Scholar 

  91. Longo VD, Finch CE (2003) Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299(5611):1342–1346

    Article  PubMed  CAS  Google Scholar 

  92. Chiang GG, Abraham RT (2007) Targeting the mTOR signaling network in cancer. Trends Mol Med 13(10):433–442

    Article  PubMed  CAS  Google Scholar 

  93. Provinciali M, Barucca A, Cardelli M, Marchegiani F, Pierpaoli E (2010) Inflammation, aging, and cancer vaccines. Biogerontology 11(5):615–626. doi:10.1007/s10522-010-9280-9

    Article  PubMed  CAS  Google Scholar 

  94. Ben Sahra I, Le Marchand-Brustel Y, J-Fo T, Fdr B (2010) Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol Cancer Ther 9(5):1092–1099. doi:10.1158/1535-7163.mct-09-1186

    Article  PubMed  CAS  Google Scholar 

  95. Bonneux L, Barendregt JJ, Nusselder WJ, Van der Maas PJ (1998) Preventing fatal diseases increases healthcare costs: cause elimination life table approach. BMJ 316(7124):26–29

    PubMed  CAS  Google Scholar 

  96. Alberti KG, Zimmet P, Shaw J (2005) The metabolic syndrome—a new worldwide definition. Lancet 366(9491):1059–1062. doi:10.1016/S0140-6736(05)67402-8

    Article  PubMed  Google Scholar 

  97. Guarente L (2006) Sirtuins as potential targets for metabolic syndrome. Nature 444(7121):868–874

    Article  PubMed  CAS  Google Scholar 

  98. Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, Berthault MF, Magnan C, Cerasi E, Kaiser N, Leibowitz G (2008) mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57(4):945–957. doi:db07-0922

    Article  PubMed  CAS  Google Scholar 

  99. Sataranatarajan K, Mariappan MM, Lee MJ, Feliers D, Choudhury GG, Barnes JL, Kasinath BS (2007) Regulation of elongation phase of mRNA translation in diabetic nephropathy: amelioration by rapamycin. Am J Pathol 171(6):1733–1742. doi:10.2353/ajpath.2007.070412

    Article  PubMed  CAS  Google Scholar 

  100. Andreadis EA, Katsanou PM, Georgiopoulos DX, Tsourous GI, Yfanti GK, Gouveri ET, Diamantopoulos EJ (2009) The effect of metformin on the incidence of type 2 diabetes mellitus and cardiovascular disease risk factors in overweight and obese subjects—the Carmos study. Exp Clin Endocrinol Diabetes 117(4):175–180. doi:10.1055/s-0028-1087177

    Article  PubMed  CAS  Google Scholar 

  101. Garelick MG, Kennedy BK (2010) TOR on the brain. Exp Gerontol 46(2–3):155–163. doi:10.1016/j.exger.2010.08.030

    PubMed  Google Scholar 

  102. Madeo F, Eisenberg T, Kroemer G (2009) Autophagy for the avoidance of neurodegeneration. Genes Dev 23(19):2253–2259. doi:10.1101/gad.1858009

    Article  PubMed  CAS  Google Scholar 

  103. Khurana V, Lu Y, Steinhilb ML, Oldham S, Shulman JM, Feany MB (2006) TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model. Curr Biol 16(3):230–241

    Article  PubMed  CAS  Google Scholar 

  104. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mTOR, Amyloid β, and tau: effects on cognitive impairments. J Biol Chem 285(17):13107–13120. doi:10.1074/jbc.M110.100420

    Article  PubMed  CAS  Google Scholar 

  105. Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9(4):285–296

    Article  PubMed  CAS  Google Scholar 

  106. Inoki K, Corradetti MN, Guan KL (2005) Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 37(1):19–24

    Article  PubMed  CAS  Google Scholar 

  107. Tee AR, Blenis J (2005) mTOR, translational control and human disease. Semin Cell Dev Biol 16(1):29–37. doi:10.1016/j.semcdb.2004.11.005

    Article  PubMed  CAS  Google Scholar 

  108. Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A (2010) Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci 65A(10):1028–1041. doi:10.1093/gerona/glq113

    Google Scholar 

  109. Woods TC, Marks AR (2004) Drug-eluting stents. Annu Rev Med 55:169–178. doi:10.1146/annurev.med.55.091902.105243

    Article  PubMed  CAS  Google Scholar 

  110. Martinet W, Knaapen MWM, Kockx MM, De Meyer GRY (2007) Autophagy in cardiovascular disease. Trends Mol Med 13(11):482–491

    Article  PubMed  CAS  Google Scholar 

  111. Young DA, Nickerson-Nutter CL (2005) mTOR—beyond transplantation. Curr Opin Pharmacol 5(4):418–423. doi:10.1016/j.coph.2005.03.004

    Article  PubMed  CAS  Google Scholar 

  112. Chappelow AV, Kaiser PK (2008) Neovascular age-related macular degeneration: potential therapies. Drugs 68(8):1029–1036

    Article  PubMed  CAS  Google Scholar 

  113. Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, Larsen CP, Ahmed R (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460(7251):108–112

    Article  PubMed  CAS  Google Scholar 

  114. Jagannath C, Lindsey DR, Dhandayuthapani S, Xu Y, Hunter RL Jr, Eissa NT (2009) Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med 15(3):267–276. doi:10.1038/nm.1928

    Article  PubMed  CAS  Google Scholar 

  115. Mita MM, Mita A, Rowinsky EK (2003) The molecular target of rapamycin (mTOR) as a therapeutic target against cancer. Cancer Biol Ther 2(4 Suppl 1):S169–S177

    PubMed  CAS  Google Scholar 

  116. Mita MM, Mita A, Rowinsky EK (2003) Mammalian target of rapamycin: a new molecular target for breast cancer. Clin Breast Cancer 4(2):126–137

    Article  PubMed  CAS  Google Scholar 

  117. Mahalingam D, Sankhala K, Mita A, Giles FJ, Mita MM (2009) Targeting the mTOR pathway using deforolimus in cancer therapy. Future Oncol 5(3):291–303

    Article  PubMed  CAS  Google Scholar 

  118. Sankhala K, Mita A, Kelly K, Mahalingam D, Giles F, Mita M (2009) The emerging safety profile of mTOR inhibitors, a novel class of anticancer agents. Targeted Oncol 4(2):135–142

    Article  Google Scholar 

  119. Mita M, Sankhala K, Abdel-Karim I, Mita A, Giles F (2008) Deforolimus (AP23573) a novel mTOR inhibitor in clinical development. Expert Opin Investig Drugs 17(12):1947–1954

    Article  PubMed  CAS  Google Scholar 

  120. Guertin DA, Sabatini DM (2009) The pharmacology of mTOR inhibition. Sci Signal 2(67):pe24. doi:10.1126/scisignal.267pe24

    Article  PubMed  Google Scholar 

  121. Garber K (2009) Targeting mTOR: something old, something new. J Natl Cancer Inst 101(5):288–290. doi:10.1093/jnci/djp034

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in Z. D. Sharp’s laboratory is supported by a RC2 Grand Opportunity grant (AG036613) from the National Institutes of Health (NIH) and by the Glenn Foundation, and work in A. Richardson’s laboratory supported by a RC2 Grand Opportunity (AG036613) and a P30-Shock Center of Excellence in Basic Biology of Aging (AG13319) grants from the NIH and a Research Enhancement Award Program grant from the Department of Veterans Affairs.

Conflict of interest statement

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zelton Dave Sharp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharp, Z.D., Richardson, A. Aging and cancer: can mTOR inhibitors kill two birds with one drug?. Targ Oncol 6, 41–51 (2011). https://doi.org/10.1007/s11523-011-0168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-011-0168-7

Keywords

Navigation