Skip to main content
Log in

Imaging in targeted delivery of therapy to cancer

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

We review the current status of imaging as applied to targeted therapy with particular focus on antibody-based therapeutics. Antibodies have high tumor specificity and can be engineered to optimize delivery to, and retention within, the tumor. Whole antibodies can activate natural immune effector mechanisms and can be conjugated to β- and α-emitting radionuclides, toxins, enzymes, and nanoparticles for enhanced therapeutic effect. Imaging is central to the development of these agents and is used for patient selection, performing dosimetry and assessment of response. γ- and positron-emitting radionuclides may be used to image the distribution of antibody-targeted therapeutics While some radionuclides such as iodine-131 emit both β and γ radiation and are therefore suitable for both imaging and therapy, others are more suited to imaging or therapy alone. Hence for radionuclide therapy of neuroendocrine tumors, patients can be selected for therapy on the basis of γ-emitting indium-111-octreotide imaging and treated with β-emitting yttrium-90-octreotate. Positron-emitting radionuclides can give greater sensitivity that γ-emitters but only a single radionuclide can be imaged at one time and the range of radionuclides is more limited. The multiple options for antibody-based therapeutic molecules, imaging technologies and therapeutic scenarios mean that very large amounts of diverse data are being acquired. This can be most effectively shared and progress accelerated by use of common data standards for imaging, biological, and clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wafelman AR, Hoefnagel CA, Maes RA, Beijnen JH (1994) Radioiodinated metaiodobenzylguanidine: a review of its biodistribution and pharmacokinetics, drug interactions, cytotoxicity and dosimetry. Eur J Nucl Med 21(6):545–559

    Article  PubMed  CAS  Google Scholar 

  2. Kolby L, Bernhardt P, Levin-Jakobsen AM, Johanson V, Wangberg B, Ahlman H et al (2003) Uptake of meta-iodobenzylguanidine in neuroendocrine tumors is mediated by vesicular monoamine transporters. Br J Cancer 89(7):1383–1388

    Article  PubMed  CAS  Google Scholar 

  3. Bombardieri E, Aktolun C, Baum RP, Bishof-Delaloye A, Buscombe J, Chatal JF et al (2003) 131I/123I-metaiodobenzylguanidine (MIBG) scintigraphy: procedure guidelines for tumor imaging. Eur J Nucl Med Mol Imaging 30(12):BP132–BP139

    PubMed  Google Scholar 

  4. Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendocrine tumors. Semin Nucl Med 36(3):228–247

    Article  PubMed  Google Scholar 

  5. Boersma HH, Wensing JW, Kho TL, de Brauw LM, Liem IH, van Kroonenburgh MJ (2000) Transient enhanced uptake of 123I-metaiodobenzylguanidine in the contralateral adrenal region after resection of an adrenal pheochromocytoma. N Engl J Med 342(19):1450–1451

    Article  PubMed  CAS  Google Scholar 

  6. Leung A, Shapiro B, Hattner R, Kim E, de Kraker J, Ghazzar N et al (1997) Specificity of radioiodinated MIBG for neural crest tumors in childhood. J Nucl Med 38(9):1352–1357

    PubMed  CAS  Google Scholar 

  7. Pacak K, Eisenhofer G, Carrasquillo JA, Chen CC, Li ST, Goldstein DS (2001) 6-[18F]fluorodopamine positron emission tomographic (PET) scanning for diagnostic localization of pheochromocytoma. Hypertension 38(1):6–8

    PubMed  CAS  Google Scholar 

  8. Mangner TJ, Klecker RW, Anderson L, Shields AF (2003) Synthesis of 2′-deoxy-2′-[18F]fluoro-beta-D-arabinofuranosyl nucleosides, [18F]FAU, [18F]FMAU, [18F]FBAU and [18F]FIAU, as potential PET agents for imaging cellular proliferation. Synthesis of [18F]labelled FAU, FMAU, FBAU, FIAU. Nucl Med Biol 30(3):215–224

    Article  PubMed  CAS  Google Scholar 

  9. Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS et al (2000) Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27(3):273–282

    Article  PubMed  CAS  Google Scholar 

  10. Reubi JC, Waser B (2003) Concomitant expression of several peptide receptors in neuroendocrine tumors: molecular basis for in vivo multireceptor tumor targeting. Eur J Nucl Med Mol Imaging 30(5):781–793

    PubMed  CAS  Google Scholar 

  11. Jenkins SA, Kynaston HG, Davies ND, Baxter JN, Nott DM (2001) Somatostatin analogs in oncology: a look to the future. Chemotherapy 47(Suppl 2):162–196

    Article  PubMed  CAS  Google Scholar 

  12. Valkema R, De Jong M, Bakker WH, Breeman WA, Kooij PP, Lugtenburg PJ et al (2002) Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med 32(2):110–122

    Article  PubMed  Google Scholar 

  13. Schillaci O, Massa R, Scopinaro F (2000) 111In-pentetreotide scintigraphy in the detection of insulinomas: importance of SPECT imaging. J Nucl Med 41(3):459–462

    PubMed  CAS  Google Scholar 

  14. Krenning EP, Bakker WH, Breeman WA, Koper JW, Kooij PP, Ausema L et al (1989) Localisation of endocrine-related tumors with radioiodinated analogue of somatostatin. Lancet 1(8632):242–244

    Article  PubMed  CAS  Google Scholar 

  15. Waldherr C, Pless M, Maecke HR, Haldemann A, Mueller-Brand J (2001) The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumors: a clinical phase II study. Ann Oncol 12(7):941–945

    Article  PubMed  CAS  Google Scholar 

  16. Hejna M, Schmidinger M, Raderer M (2002) The clinical role of somatostatin analogues as antineoplastic agents: much ado about nothing? Ann Oncol 13(5):653–668

    Article  PubMed  CAS  Google Scholar 

  17. Kwekkeboom DJ, Teunissen JJ, Bakker WH, Kooij PP, de Herder WW, Feelders RA et al (2005) Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol 23(12):2754–2762

    Article  PubMed  CAS  Google Scholar 

  18. Bodei L, Cremonesi M, Grana C, Rocca P, Bartolomei M, Chinol M et al (2004) Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumors. Eur J Nucl Med Mol Imaging 31(7):1038–1046

    Article  PubMed  CAS  Google Scholar 

  19. Wild D, Macke HR, Waser B, Reubi JC, Ginj M, Rasch H et al (2005) 68 Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5. Eur J Nucl Med Mol Imaging 32(6):724

    Article  PubMed  Google Scholar 

  20. Hofmann M, Maecke H, Borner R, Weckesser E, Schoffski P, Oei L et al (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med 28(12):1751–1757

    Article  PubMed  CAS  Google Scholar 

  21. Anderson CJ, Dehdashti F, Cutler PD, Schwarz SW, Laforest R, Bass LA et al (2001) 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med 42(2):213–221

    PubMed  CAS  Google Scholar 

  22. Orlefors H, Sundin A, Garske U, Juhlin C, Oberg K, Skogseid B et al (2005) Whole-body (11)C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab 90(6):3392–3400

    Article  PubMed  CAS  Google Scholar 

  23. Virgolini I, Traub T, Leimer M, Novotny C, Pangerl T, Ofluoglu S et al (2000) New radiopharmaceuticals for receptor scintigraphy and radionuclide therapy. Q J Nucl Med 44(1):50–58

    PubMed  CAS  Google Scholar 

  24. Virgolini I, Raderer M, Kurtaran A, Angelberger P, Banyai S, Yang Q et al (1994) Vasoactive intestinal peptide-receptor imaging for the localization of intestinal adenocarcinomas and endocrine tumors. N Engl J Med 331(17):1116–1121

    Article  PubMed  CAS  Google Scholar 

  25. Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24(4):389–427

    Article  PubMed  CAS  Google Scholar 

  26. Kwekkeboom DJ, Bakker WH, Kooij PP, Erion J, Srinivasan A, de Jong M et al (2000) Cholecystokinin receptor imaging using an octapeptide DTPA-CCK analogue in patients with medullary thyroid carcinoma. Eur J Nucl Med 27(9):1312–1317

    Article  PubMed  CAS  Google Scholar 

  27. Behr TM, Behe MP (2002) Cholecystokinin-B/Gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin Nucl Med 32(2):97–109

    Article  PubMed  Google Scholar 

  28. Hoffman TJ, Gali H, Smith CJ, Sieckman GL, Hayes DL, Owen NK et al (2003) Novel series of 111In-labeled bombesin analogs as potential radiopharmaceuticals for specific targeting of gastrin-releasing peptide receptors expressed on human prostate cancer cells. J Nucl Med 44(5):823–831

    PubMed  CAS  Google Scholar 

  29. Breeman WA, De Jong M, Bernard BF, Kwekkeboom DJ, Srinivasan A, van der Pluijm ME et al (1999) Pre-clinical evaluation of [(111)In-DTPA-Pro(1), Tyr(4)]bombesin, a new radioligand for bombesin-receptor scintigraphy. Int J Cancer 83(5):657–663

    Article  PubMed  CAS  Google Scholar 

  30. Gotthardt M, Fischer M, Naeher I, Holz JB, Jungclas H, Fritsch HW et al (2002) Use of the incretin hormone glucagon-like peptide-1 (GLP-1) for the detection of insulinomas: initial experimental results. Eur J Nucl Med Mol Imaging 29(5):597–606

    Article  PubMed  CAS  Google Scholar 

  31. Begent RH, Keep PA, Searle F, Green AJ, Mitchell HD, Jones BE et al (1986) Radioimmunolocalization and selection for surgery in recurrent colorectal cancer. Br J Surg 73(1):64–67

    Article  PubMed  CAS  Google Scholar 

  32. Begent RH, Searle F, Stanway G, Jewkes RF, Jones BE, Vernon P et al (1980) Radioimmunolocalization of tumors by external scintigraphy after administration of 131I antibody to human chorionic gonadotrophin: preliminary communication. J R Soc Med 73(9):624–630

    PubMed  CAS  Google Scholar 

  33. Hitchins RN, Begent RH, Green AJ, Searle F, van Heyningen V, Bagshawe KD (1989) Clinical value of imaging using antibody to alpha fetoprotein in germ cell tumors. Nuklearmedizin 28(1):29–33

    PubMed  CAS  Google Scholar 

  34. Mach JP, Carrel S, Forni M, Ritschard J, Donath A, Alberto P (1980) Tumor localization of radiolabeled antibodies against carcinoembryonic antigen in patients with carcinoma: a critical evaluation. N Engl J Med 303(1):5–10

    PubMed  CAS  Google Scholar 

  35. Wu AM, Yazaki PJ (2000) Designer genes: recombinant antibody fragments for biological imaging. Q J Nucl Med 44(3):268–283

    PubMed  CAS  Google Scholar 

  36. Goel A, Baranowska-Kortylewicz J, Hinrichs SH, Wisecarver J, Pavlinkova G, Augustine S et al (2001) 99mTc-labeled divalent and tetravalent CC49 single-chain Fv’s: novel imaging agents for rapid in vivo localization of human colon carcinoma. J Nucl Med 42(10):1519–1527

    PubMed  CAS  Google Scholar 

  37. Wittel UA, Jain M, Goel A, Chauhan SC, Colcher D, Batra SK (2005) The in vivo characteristics of genetically engineered divalent and tetravalent single-chain antibody constructs. Nucl Med Biol 32(2):157–164

    Article  PubMed  CAS  Google Scholar 

  38. Hu S, Shively L, Raubitschek A, Sherman M, Williams LE, Wong JY et al (1996) Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res 56(13):3055–3061

    PubMed  CAS  Google Scholar 

  39. Dearling JL, Pedley RB (2007) Technological advances in radioimmunotherapy. Clin Oncol (R Coll Radiol) 19(6):457–469

    CAS  Google Scholar 

  40. Huhalov A, Chester KA (2004) Engineered single chain antibody fragments for radioimmunotherapy. Q J Nucl Med Mol Imaging 48(4):279–288

    PubMed  CAS  Google Scholar 

  41. Begent RH, Verhaar MJ, Chester KA, Casey JL, Green AJ, Napier MP et al (1996) (1996) Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat Med 2(9):979–984

    Article  PubMed  CAS  Google Scholar 

  42. Adams GP, Shaller CC, Dadachova E, Simmons HH, Horak EM, Tesfaye A et al (2004) A single treatment of yttrium-90-labeled CHX-A″-C6.5 diabody inhibits the growth of established human tumor xenografts in immunodeficient mice. Cancer Res 64(17):6200–6206

    Article  PubMed  CAS  Google Scholar 

  43. Baum RP, Niesen A, Hertel A, Adams S, Kojouharoff G, Goldenberg DM et al (1994) Initial clinical results with technetium-99 m-labeled LL2 monoclonal antibody fragment in the radioimmunodetection of B-cell lymphomas. Cancer 73(3 Suppl):896–899

    Article  PubMed  CAS  Google Scholar 

  44. Behr TM, Goldenberg DM, Becker W (1998) Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med 25(2):201–212

    Article  PubMed  CAS  Google Scholar 

  45. Luxton RW (1961) Radiation nephritis. A long-term study of 54 patients. Lancet 2(7214):1221–1224

    Article  PubMed  CAS  Google Scholar 

  46. Madrazo AA, Churg J (1976) Radiation nephritis. Chronic changes following moderate doses of radiation. Lab Invest 34(3):283–290

    PubMed  CAS  Google Scholar 

  47. Pimm MV, Gribben SJ (1994) Prevention of renal tubule re-absorption of radiometal (indium-111) labelled Fab fragment of a monoclonal antibody in mice by systemic administration of lysine. Eur J Nucl Med 21(7):663–665

    Article  PubMed  CAS  Google Scholar 

  48. Behr TM, Sharkey RM, Juweid ME, Blumenthal RD, Dunn RM, Griffiths GL et al (1995) Reduction of the renal uptake of radiolabeled monoclonal antibody fragments by cationic amino acids and their derivatives. Cancer Res 55(17):3825–3834

    PubMed  CAS  Google Scholar 

  49. Behr TM, Becker WS, Sharkey RM, Juweid ME, Dunn RM, Bair HJ et al (1996) Reduction of renal uptake of monoclonal antibody fragments by amino acid infusion. J Nucl Med 37(5):829–833

    PubMed  CAS  Google Scholar 

  50. Hammond PJ, Wade AF, Gwilliam ME, Peters AM, Myers MJ, Gilbey SG et al (1993) Amino acid infusion blocks renal tubular uptake of an indium-labelled somatostatin analogue. Br J Cancer 67(6):1437–1439

    PubMed  CAS  Google Scholar 

  51. Garkavij M, Samarzija M, Ewers SB, Jakopovic M, Tezak S, Tennvall J (2005) Concurrent radiotherapy and tumor targeting with 111In-HMFG1-F(ab’)2 in patients with MUC1-positive non-small cell lung cancer. Anticancer Res 25(6C):4663–4671

    PubMed  CAS  Google Scholar 

  52. Berndorff D, Borkowski S, Sieger S, Rother A, Friebe M, Viti F et al (2005) Radioimmunotherapy of solid tumors by targeting extra domain B fibronectin: identification of the best-suited radioimmunoconjugate. Clin Cancer Res 11(19 Pt 2):7053s–7063s

    Article  PubMed  CAS  Google Scholar 

  53. Hong H, Sun J, Cai W (2008) Radionuclide-based cancer imaging targeting the carcinoembryonic antigen. Biomark Insights 3:435–451

    PubMed  CAS  Google Scholar 

  54. Robinson MK, Doss M, Shaller C, Narayanan D, Marks JD, Adler LP et al (2005) Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res 65(4):1471–1478

    Article  PubMed  CAS  Google Scholar 

  55. Osbourn JK, Field A, Wilton J, Derbyshire E, Earnshaw JC, Jones PT et al (1996) Generation of a panel of related human scFv antibodies with high affinities for human CEA. Immunotechnology 2(3):181–196

    Article  PubMed  CAS  Google Scholar 

  56. Green AJ, Johnson CJ, Adamson KL, Begent RH (2001) Mathematical model of antibody targeting: important parameters defined using clinical data. Phys Med Biol 46(6):1679–1693

    Article  PubMed  CAS  Google Scholar 

  57. Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK et al (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 61(12):4750–4755

    PubMed  CAS  Google Scholar 

  58. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2(10):750–763

    Article  PubMed  CAS  Google Scholar 

  59. Richman CM, DeNardo SJ (2001) Systemic radiotherapy in metastatic breast cancer using 90Y-linked monoclonal MUC-1 antibodies. Crit Rev Oncol Hematol 38(1):25–35

    Article  PubMed  CAS  Google Scholar 

  60. Barratt-Boyes SM (1996) Making the most of mucin: a novel target for tumor immunotherapy. Cancer Immunol Immunother 43(3):142–151

    Article  PubMed  CAS  Google Scholar 

  61. Burke PA, Gregg JP, Bakhtiar B, Beckett LA, Denardo GL, Albrecht H et al (2006) Characterization of MUC1 glycoprotein on prostate cancer for selection of targeting molecules. Int J Oncol 29(1):49–55

    PubMed  CAS  Google Scholar 

  62. Price MR, Rye PD, Petrakou E, Murray A, Brady K, Imai S et al (1998) Summary report on the ISOBM TD-4 Workshop: analysis of 56 monoclonal antibodies against the MUC1 mucin. San Diego, Calif., November 17–23, 1996. Tumor Biol 19(Suppl 1):1–20

    Article  Google Scholar 

  63. DeNardo SJ, Kramer EL, O’Donnell RT, Richman CM, Salako QA, Shen S et al (1997) Radioimmunotherapy for breast cancer using indium-111/yttrium-90 BrE-3: results of a phase I clinical trial. J Nucl Med 38(8):1180–1185

    PubMed  CAS  Google Scholar 

  64. Schrier DM, Stemmer SM, Johnson T, Kasliwal R, Lear J, Matthes S et al (1995) High-dose 90Y Mx-diethylenetriaminepentaacetic acid (DTPA)-BrE-3 and autologous hematopoietic stem cell support (AHSCS) for the treatment of advanced breast cancer: a phase I trial. Cancer Res 55(23 Suppl):5921s–5924s

    PubMed  CAS  Google Scholar 

  65. DeNardo SJ, Denardo GL (2006) Targeted radionuclide therapy for solid tumors: an overview. Int J Radiat Oncol Biol Phys 66(2 Suppl):S89–S95

    PubMed  CAS  Google Scholar 

  66. Howell LP, DeNardo SJ, Levy NB, Lund J, Denardo GL (1995) Immunohistochemical staining of metastatic ductal carcinomas of the breast by monoclonal antibodies used in imaging and therapy: a comparative study. Int J Biol Markers 10(3):129–135

    PubMed  CAS  Google Scholar 

  67. Peterson JA, Zava DT, Duwe AK, Blank EW, Battifora H, Ceriani RL (1990) Biochemical and histological characterization of antigens preferentially expressed on the surface and cytoplasm of breast carcinoma cells identified by monoclonal antibodies against the human milk fat globule. Hybridoma 9(3):221–235

    Article  PubMed  CAS  Google Scholar 

  68. Kramer EL, DeNardo SJ, Liebes L, Kroger LA, Noz ME, Mizrachi H et al (1993) Radioimmunolocalization of metastatic breast carcinoma using indium-111-methyl benzyl DTPA BrE-3 monoclonal antibody: phase I study. J Nucl Med 34(7):1067–1074

    PubMed  CAS  Google Scholar 

  69. McEwan AJ, MacLean GD, Hooper HR, Sykes T, McQuarrie SA, Golberg L et al (1992) MAb 170H.82: an evaluation of a novel panadenocarcinoma monoclonal antibody labelled with 99Tcm and with 111In. Nucl Med Commun 13(1):11–19

    Article  PubMed  CAS  Google Scholar 

  70. Richman CM, DeNardo SJ, O’Donnell RT, Goldstein DS, Shen S, Kukis DL et al (1999) Dosimetry-based therapy in metastatic breast cancer patients using 90Y monoclonal antibody 170H.82 with autologous stem cell support and cyclosporin A. Clin Cancer Res 5(10 Suppl):3243s–3248s

    PubMed  CAS  Google Scholar 

  71. O’Donnell RT, DeNardo SJ, Yuan A, Shen S, Richman CM, Lara PN et al (2001) Radioimmunotherapy with (111)In/(90)Y-2IT-BAD-m170 for metastatic prostate cancer. Clin Cancer Res 7(6):1561–1568

    PubMed  Google Scholar 

  72. DeNardo SJ, Richman CM, Albrecht H, Burke PA, Natarajan A, Yuan A et al (2005) Enhancement of the therapeutic index: from nonmyeloablative and myeloablative toward pretargeted radioimmunotherapy for metastatic prostate cancer. Clin Cancer Res 11(19 Pt 2):7187s–7194s

    Article  PubMed  CAS  Google Scholar 

  73. Albrecht H, Denardo GL, DeNardo SJ (2007) Development of anti-MUC1 di-scFvs for molecular targeting of epithelial cancers, such as breast and prostate cancers. Q J Nucl Med Mol Imaging 51(4):304–313

    PubMed  CAS  Google Scholar 

  74. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111(9):1287–1295

    PubMed  CAS  Google Scholar 

  75. Amir E, Hughes S, Blackhall F, Thatcher N, Ostoros G, Timar J et al (2008) Targeting blood vessels for the treatment of non-small cell lung cancer. Curr Cancer Drug Targets 8(5):392–403

    Article  PubMed  CAS  Google Scholar 

  76. Israeli RS, Powell CT, Fair WR, Heston WD (1993) Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res 53(2):227–230

    PubMed  CAS  Google Scholar 

  77. Israeli RS, Miller WH Jr, Su SL, Powell CT, Fair WR, Samadi DS et al (1994) Sensitive nested reverse transcription polymerase chain reaction detection of circulating prostatic tumor cells: comparison of prostate-specific membrane antigen and prostate-specific antigen-based assays. Cancer Res 54(24):6306–6310

    PubMed  CAS  Google Scholar 

  78. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3(1):81–85

    PubMed  CAS  Google Scholar 

  79. Liu H, Moy P, Kim S, Xia Y, Rajasekaran A, Navarro V et al (1997) Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 57(17):3629–3634

    PubMed  CAS  Google Scholar 

  80. Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB (1999) Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res 59(13):3192–3198

    PubMed  CAS  Google Scholar 

  81. Liu H, Rajasekaran AK, Moy P, Xia Y, Kim S, Navarro V et al (1998) Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res 58(18):4055–4060

    PubMed  CAS  Google Scholar 

  82. Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ, Bander NH (2004) Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol 22(13):2522–2531

    Article  PubMed  CAS  Google Scholar 

  83. Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ (2005) Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol 23(21):4591–4601

    Article  PubMed  CAS  Google Scholar 

  84. Zardi L, Carnemolla B, Siri A, Petersen TE, Paolella G, Sebastio G et al (1987) Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J 6(8):2337–2342

    PubMed  CAS  Google Scholar 

  85. Castellani P, Borsi L, Carnemolla B, Biro A, Dorcaratto A, Viale GL et al (2002) Differentiation between high- and low-grade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin. Am J Pathol 161(5):1695–1700

    PubMed  CAS  Google Scholar 

  86. Borsi L, Balza E, Bestagno M, Castellani P, Carnemolla B, Biro A et al (2002) Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 102(1):75–85

    Article  PubMed  CAS  Google Scholar 

  87. Sauer S, Erba PA, Petrini M, Menrad A, Giovannoni L, Grana C et al (2009) Expression of the oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19SIP radioimmunotherapy in Hodgkin’s lymphoma patients. Blood 113(10):2265–2274

    Article  PubMed  CAS  Google Scholar 

  88. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23(9):1126–1136

    Article  PubMed  CAS  Google Scholar 

  89. Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R et al (2002) Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol 20(10):2453–2463

    Article  PubMed  CAS  Google Scholar 

  90. Gordon LI, Witzig T, Molina A, Czuczman M, Emmanouilides C, Joyce R et al (2004) Yttrium 90-labeled ibritumomab tiuxetan radioimmunotherapy produces high response rates and durable remissions in patients with previously treated B-cell lymphoma. Clin Lymphoma 5(2):98–101

    Article  PubMed  CAS  Google Scholar 

  91. Kaminski MS, Zelenetz AD, Press OW, Saleh M, Leonard J, Fehrenbacher L et al (2001) Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol 19(19):3918–3928

    PubMed  CAS  Google Scholar 

  92. Srivastava S, Dadachova E (2001) Recent advances in radionuclide therapy. Semin Nucl Med 31(4):330–341

    Article  PubMed  CAS  Google Scholar 

  93. Humm JL (1986) Dosimetric aspects of radiolabeled antibodies for tumor therapy. J Nucl Med 27(9):1490–1497

    PubMed  CAS  Google Scholar 

  94. Sharkey RM, Blumenthal RD, Behr TM, Wong GY, Haywood L, Forman D et al (1997) Selection of radioimmunoconjugates for the therapy of well-established or micrometastatic colon carcinoma. Int J Cancer 72(3):477–485

    Article  PubMed  CAS  Google Scholar 

  95. Koppe MJ, Bleichrodt RP, Soede AC, Verhofstad AA, Goldenberg DM, Oyen WJ et al (2004) Biodistribution and therapeutic efficacy of (125/131)I-, (186)Re-, (88/90)Y-, or (177)Lu-labeled monoclonal antibody MN-14 to carcinoembryonic antigen in mice with small peritoneal metastases of colorectal origin. J Nucl Med 45(7):1224–1232

    PubMed  CAS  Google Scholar 

  96. Nourigat C, Badger CC, Bernstein ID (1990) Treatment of lymphoma with radiolabeled antibody: elimination of tumor cells lacking target antigen. J Natl Cancer Inst 82(1):47–50

    Article  PubMed  CAS  Google Scholar 

  97. O’Donoghue JA, Bardies M, Wheldon TE (1995) Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med 36(10):1902–1909

    PubMed  Google Scholar 

  98. Richman CM, DeNardo SJ (2001) Systemic radiotherapy in metastatic breast cancer using 90Y-linked monoclonal MUC-1 antibodies. Crit Rev Oncol Hematol 38(1):25–35

    Article  PubMed  CAS  Google Scholar 

  99. Allen BJ (1999) Can alpha-immunotherapy succeed where other systemic modalities have failed? Nucl Med Commun 20(3):205–207

    PubMed  CAS  Google Scholar 

  100. McDevitt MR, Sgouros G, Finn RD, Humm JL, Jurcic JG, Larson SM et al (1998) Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med 25(9):1341–1351

    Article  PubMed  CAS  Google Scholar 

  101. Hartmann F, Horak EM, Garmestani K, Wu C, Brechbiel MW, Kozak RW et al (1994) Radioimmunotherapy of nude mice bearing a human interleukin 2 receptor alpha-expressing lymphoma utilizing the alpha-emitting radionuclide-conjugated monoclonal antibody 212Bi-anti-Tac. Cancer Res 54(16):4362–4370

    PubMed  CAS  Google Scholar 

  102. Bethge WA, Wilbur DS, Storb R, Hamlin DK, Santos EB, Brechbiel MW et al (2003) Selective T-cell ablation with bismuth-213-labeled anti-TCRalphabeta as nonmyeloablative conditioning for allogeneic canine marrow transplantation. Blood 101(12):5068–5075

    Article  PubMed  CAS  Google Scholar 

  103. Janssen ML, Pels W, Massuger LF, Oyen WJ, Boonstra H, Corstens FH et al (2003) Intraperitoneal radioimmunotherapy in an ovarian carcinoma mouse model: effect of the radionuclide. Int J Gynecol Cancer 13(5):607–613

    Article  PubMed  CAS  Google Scholar 

  104. Jurcic JG, Larson SM, Sgouros G, McDevitt MR, Finn RD, Divgi CR et al (2002) Targeted alpha particle immunotherapy for myeloid leukemia. Blood 100(4):1233–1239

    PubMed  CAS  Google Scholar 

  105. Bumol TF, Reisfeld RA (1982) Unique glycoprotein-proteoglycan complex defined by monoclonal antibody on human melanoma cells. Proc Natl Acad Sci U S A 79(4):1245–1249

    Article  PubMed  CAS  Google Scholar 

  106. Rizvi SM, Allen BJ, Tian Z, Goozee G, Sarkar S (2001) In vitro and preclinical studies of targeted alpha therapy (TAT) for colorectal cancer. Colorectal Dis 3(5):345–353

    Article  PubMed  CAS  Google Scholar 

  107. Allen BJ, Raja C, Rizvi S, Li Y, Tsui W, Graham P et al (2005) Intralesional targeted alpha therapy for metastatic melanoma. Cancer Biol Ther 4(12):1318–1324

    PubMed  CAS  Google Scholar 

  108. Raja C, Graham P, Abbas Rizvi SM, Song E, Goldsmith H, Thompson J et al (2007) Interim analysis of toxicity and response in phase 1 trial of systemic targeted alpha therapy for metastatic melanoma. Cancer Biol Ther 6(6):846–852

    Article  PubMed  CAS  Google Scholar 

  109. Zalutsky MR, Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS et al (2008) Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med 49(1):30–38

    Article  PubMed  CAS  Google Scholar 

  110. Kassis AI, Harapanhalli RS, Adelstein SJ (1999) Strand breaks in plasmid DNA after positional changes of Auger electron-emitting iodine-125: direct compared to indirect effects. Radiat Res 152(5):530–538

    Article  PubMed  CAS  Google Scholar 

  111. Akabani G, Carlin S, Welsh P, Zalutsky MR (2006) In vitro cytotoxicity of 211At-labeled trastuzumab in human breast cancer cell lines: effect of specific activity and HER2 receptor heterogeneity on survival fraction. Nucl Med Biol 33(3):333–347

    Article  PubMed  CAS  Google Scholar 

  112. Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M, Guermazi A et al (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 25(5):571–578

    Article  PubMed  Google Scholar 

  113. Barbet J, Kraeber-Bodere F, Chatal JF (2008) What can be expected from nuclear medicine tomorrow? Cancer Biother Radiopharm 23(4):483–504

    Article  PubMed  CAS  Google Scholar 

  114. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S

    Article  PubMed  CAS  Google Scholar 

  115. Freudenberg LS, Jentzen W, Muller SP, Bockisch A (2008) Disseminated iodine-avid lung metastases in differentiated thyroid cancer: a challenge to 124I PET. Eur J Nucl Med Mol Imaging 35(3):502–508

    Article  PubMed  CAS  Google Scholar 

  116. Dunphy MP, Lewis JS (2009) Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J Nucl Med 50(Suppl 1):106S–121S

    Article  PubMed  CAS  Google Scholar 

  117. Ferro-Flores G, de Murphy CA (2007) Current developments in SPECT/CT systems using 99mTc-radiopharmaceuticals. Rev Invest Clin 59(5):373–381

    PubMed  CAS  Google Scholar 

  118. Goldenberg DM, Sharkey RM (2007) Novel radiolabeled antibody conjugates. Oncogene 26(25):3734–3744

    Article  PubMed  CAS  Google Scholar 

  119. Behr TM, Becker WS, Bair HJ, Klein MW, Stuhler CM, Cidlinsky KP et al (1995) Comparison of complete versus fragmented technetium-99 m-labeled anti-CEA monoclonal antibodies for immunoscintigraphy in colorectal cancer. J Nucl Med 36(3):430–441

    PubMed  CAS  Google Scholar 

  120. Wegener WA, Petrelli N, Serafini A, Goldenberg DM (2000) Safety and efficacy of arcitumomab imaging in colorectal cancer after repeated administration. J Nucl Med 41(6):1016–1020

    PubMed  CAS  Google Scholar 

  121. Lane DM, Eagle KF, Begent RH, Hope-Stone LD, Green AJ, Casey JL et al (1994) Radioimmunotherapy of metastatic colorectal tumors with iodine-131-labelled antibody to carcinoembryonic antigen: phase I/II study with comparative biodistribution of intact and F(ab’)2 antibodies. Br J Cancer 70(3):521–525

    PubMed  CAS  Google Scholar 

  122. Fuster D, Maurel J, Muxi A, Setoain X, Ayuso C, Martin F et al (2003) Is there a role for (99 m)Tc-anti-CEA monoclonal antibody imaging in the diagnosis of recurrent colorectal carcinoma? Q J Nucl Med 47(2):109–115

    PubMed  CAS  Google Scholar 

  123. Libutti SK, Alexander HR Jr, Choyke P, Bartlett DL, Bacharach SL, Whatley M et al (2001) A prospective study of 2-[18F] fluoro-2-deoxy-D-glucose/positron emission tomography scan, 99mTc-labeled arcitumomab (CEA-scan), and blind second-look laparotomy for detecting colon cancer recurrence in patients with increasing carcinoembryonic antigen levels. Ann Surg Oncol 8(10):779–786

    Article  PubMed  CAS  Google Scholar 

  124. Jhanwar YS, Divgi C (2005) Current status of therapy of solid tumors. J Nucl Med 46(Suppl 1):141S–150S

    PubMed  Google Scholar 

  125. Goldenberg DM, Sharkey RM, Paganelli G, Barbet J, Chatal JF (2006) Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol 24(5):823–834

    Article  PubMed  CAS  Google Scholar 

  126. Urbano N, Papi S, Ginanneschi M, De SR, Pace S, Lindstedt R et al (2007) Evaluation of a new biotin-DOTA conjugate for pretargeted antibody-guided radioimmunotherapy (PAGRIT). Eur J Nucl Med Mol Imaging 34(1):68–77

    Article  PubMed  CAS  Google Scholar 

  127. Breitz HB, Weiden PL, Beaumier PL, Axworthy DB, Seiler C, Su FM et al (2000) Clinical optimization of pretargeted radioimmunotherapy with antibody-streptavidin conjugate and 90Y-DOTA-biotin. J Nucl Med 41(1):131–140

    PubMed  CAS  Google Scholar 

  128. Breitz HB, Fisher DR, Goris ML, Knox S, Ratliff B, Murtha AD et al (1999) Radiation absorbed dose estimation for 90Y-DOTA-biotin with pretargeted NR-LU-10/streptavidin. Cancer Biother Radiopharm 14(5):381–395

    Article  PubMed  CAS  Google Scholar 

  129. Kraeber-Bodere F, Faivre-Chauvet A, Ferrer L, Vuillez JP, Brard PY, Rousseau C et al (2003) Pharmacokinetics and dosimetry studies for optimization of anti-carcinoembryonic antigen x anti-hapten bispecific antibody-mediated pretargeting of Iodine-131-labeled hapten in a phase I radioimmunotherapy trial. Clin Cancer Res 9(10 Pt 2):3973S–3981S

    PubMed  CAS  Google Scholar 

  130. Kraeber-Bodere F, Rousseau C, Bodet-Milin C, Ferrer L, Faivre-Chauvet A, Campion L et al (2006) Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131I-labeled bivalent hapten in a phase I optimization clinical trial. J Nucl Med 47(2):247–255

    PubMed  CAS  Google Scholar 

  131. Bagshawe KD, Sharma SK, Begent RH (2004) Antibody-directed enzyme prodrug therapy (ADEPT) for cancer. Expert Opin Biol Ther 4(11):1777–1789

    Article  PubMed  CAS  Google Scholar 

  132. Francis RJ, Sharma SK, Springer C, Green AJ, Hope-Stone LD, Sena L et al (2002) A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumors. Br J Cancer 87(6):600–607

    Article  PubMed  CAS  Google Scholar 

  133. Napier MP, Sharma SK, Springer CJ, Bagshawe KD, Green AJ, Martin J et al (2000) Antibody-directed enzyme prodrug therapy: efficacy and mechanism of action in colorectal carcinoma. Clin Cancer Res 6(3):765–772

    PubMed  CAS  Google Scholar 

  134. Mayer A, Francis RJ, Sharma SK, Tolner B, Springer CJ, Martin J et al (2006) A phase I study of single administration of antibody-directed enzyme prodrug therapy with the recombinant anti-carcinoembryonic antigen antibody-enzyme fusion protein MFECP1 and a bis-iodo phenol mustard prodrug. Clin Cancer Res 12(21):6509–6516

    Article  PubMed  CAS  Google Scholar 

  135. Liedert B, Bassus S, Schneider CK, Kalinke U, Lower J (2007) Safety of phase I clinical trials with monoclonal antibodies in Germany—the regulatory requirements viewed in the aftermath of the TGN1412 disaster. Int J Clin Pharmacol Ther 45(1):1–9

    PubMed  CAS  Google Scholar 

  136. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD et al (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355(10):1018–1028

    Article  PubMed  CAS  Google Scholar 

  137. Kenter MJ, Cohen AF (2006) Establishing risk of human experimentation with drugs: lessons from TGN1412. Lancet 368(9544):1387–1391

    Article  PubMed  CAS  Google Scholar 

  138. Muller PY, Brennan FR (2009) Safety assessment and dose selection for first-in-human clinical trials with immunomodulatory monoclonal antibodies. Clin Pharmacol Ther 85(3):247–258

    Article  PubMed  CAS  Google Scholar 

  139. Department of Health (2006) Expert Scientific Group on phase one clinical trials: a consultation. Department of Health. 14-9-2006. Abstract

  140. Hamoudeh M, Kamleh MA, Diab R, Fessi H (2008) Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 60(12):1329–1346

    Article  PubMed  CAS  Google Scholar 

  141. Franc BL, Acton PD, Mari C, Hasegawa BH (2008) Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med 49(10):1651–1663

    Article  PubMed  Google Scholar 

  142. Weber WA, Czernin J, Phelps ME, Herschman HR (2008) Technology Insight: novel imaging of molecular targets is an emerging area crucial to the development of targeted drugs. Nat Clin Pract Oncol 5(1):44–54

    Article  PubMed  CAS  Google Scholar 

  143. Galbraith SM, Maxwell RJ, Lodge MA, Tozer GM, Wilson J, Taylor NJ et al (2003) Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 21(15):2831–2842

    Article  PubMed  CAS  Google Scholar 

  144. Meyer T, Gaya AM, Dancey G, Stratford MR, Othman S, Sharma SK et al (2009) A phase I trial of radioimmunotherapy with 131I–A5B7 anti-CEA antibody in combination with combretastatin-A4-phosphate in advanced gastrointestinal carcinomas. Clin Cancer Res 15(13):4484–4492

    Article  PubMed  CAS  Google Scholar 

  145. Hahn OM, Yang C, Medved M, Karczmar G, Kistner E, Karrison T et al (2008) Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol 26(28):4572–4578

    Article  PubMed  CAS  Google Scholar 

  146. Flaherty KT, Rosen MA, Heitjan DF, Gallagher ML, Schwartz B, Schnall MD et al (2008) Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther 7(4):496–501

    PubMed  CAS  Google Scholar 

  147. McLarty K, Cornelissen B, Scollard DA, Done SJ, Chun K, Reilly RM (2009) Associations between the uptake of 111In-DTPA-trastuzumab, HER2 density and response to trastuzumab (Herceptin) in athymic mice bearing subcutaneous human tumor xenografts. Eur J Nucl Med Mol Imaging 36(1):81–93

    Article  PubMed  CAS  Google Scholar 

  148. Dijkers EC, Kosterink JG, Rademaker AP, Perk LR, van Dongen GA, Bart J et al (2009) Development and characterization of clinical-grade 89Zr-Trastuzumab for HER2/neu ImmunoPET imaging. J Nucl Med 50(6):974–981

    Article  PubMed  CAS  Google Scholar 

  149. Perik PJ, Lub-de Hooge MN, Gietema JA, van der Graaf WT, de Korte MA, Jonkman S et al (2006) Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 24(15):2276–2282

    Article  PubMed  CAS  Google Scholar 

  150. Aerts HJ, Dubois L, Perk L, Vermaelen P, van Dongen GA, Wouters BG et al (2009) Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J Nucl Med 50(1):123–131

    Article  PubMed  CAS  Google Scholar 

  151. DeNardo SJ, Richman CM, Goldstein DS, Shen S, Salako Q, Kukis DL et al (1997) Yttrium-90/indium-111-DOTA-peptide-chimeric L6: pharmacokinetics, dosimetry and initial results in patients with incurable breast cancer. Anticancer Res 17(3B):1735–1744

    PubMed  CAS  Google Scholar 

  152. Denardo GL, Raventos A, Hines HH, Scheibe PO, Macey DJ, Hays MT et al (1985) Requirements for a treatment planning system for radioimmunotherapy. Int J Radiat Oncol Biol Phys 11(2):335–348

    PubMed  CAS  Google Scholar 

  153. Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF et al (1999) MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 40(2):37S–61S

    PubMed  CAS  Google Scholar 

  154. Sgouros G, Chiu S, Pentlow KS, Brewster LJ, Kalaigian H, Baldwin B et al (1993) Three-dimensional dosimetry for radioimmunotherapy treatment planning. J Nucl Med 34(9):1595–1601

    PubMed  CAS  Google Scholar 

  155. Tagesson M, Ljungberg M, Strand SE (1996) A Monte-Carlo program converting activity distributions to absorbed dose distributions in a radionuclide treatment planning system. Acta Oncol 35(3):367–372

    Article  PubMed  CAS  Google Scholar 

  156. Watson EE, Stabin MG, Siegel JA (1993) MIRD formulation. Med Phys 20(2 Pt 2):511–514

    Article  PubMed  CAS  Google Scholar 

  157. Bardies M, Myers MJ (1996) Computational methods in radionuclide dosimetry. Phys Med Biol 41(10):1941–1955

    Article  PubMed  CAS  Google Scholar 

  158. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46(6):1023–1027

    PubMed  Google Scholar 

  159. Press OW, Eary JF, Badger CC, Martin PJ, Appelbaum FR, Levy R et al (1989) Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol 7(8):1027–1038

    PubMed  CAS  Google Scholar 

  160. Press OW, Eary JF, Badger CC, Martin PJ, Appelbaum FR, Nelp WB et al (1990) High-dose radioimmunotherapy of B cell lymphomas. Front Radiat Ther Oncol 24:204–213

    PubMed  CAS  Google Scholar 

  161. Press OW, Eary JF, Appelbaum FR, Martin PJ, Badger CC, Nelp WB et al (1993) Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med 329(17):1219–1224

    Article  PubMed  CAS  Google Scholar 

  162. Green AJ, Dewhurst SE, Begent RH, Bagshawe KD, Riggs SJ (1990) Accurate quantification of 131I distribution by gamma camera imaging. Eur J Nucl Med 16(4–6):361–365

    Article  PubMed  CAS  Google Scholar 

  163. Siegel JA, Yeldell D, Goldenberg DM, Stabin MG, Sparks RB, Sharkey RM et al (2003) Red marrow radiation dose adjustment using plasma FLT3-L cytokine levels: improved correlations between hematologic toxicity and bone marrow dose for radioimmunotherapy patients. J Nucl Med 44(1):67–76

    PubMed  CAS  Google Scholar 

  164. Wahl RL (2003) The clinical importance of dosimetry in radioimmunotherapy with tositumomab and iodine I 131 tositumomab. Semin Oncol 30(2 Suppl 4):31–38

    PubMed  CAS  Google Scholar 

  165. Kaminski MS, Zasadny KR, Francis IR, Milik AW, Ross CW, Moon SD et al (1993) Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody. N Engl J Med 329(7):459–465

    Article  PubMed  CAS  Google Scholar 

  166. Wiseman GA, White CA, Sparks RB, Erwin WD, Podoloff DA, Lamonica D et al (2001) Biodistribution and dosimetry results from a phase III prospectively randomized controlled trial of Zevalin radioimmunotherapy for low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. Crit Rev Oncol Hematol 39(1–2):181–194

    Article  PubMed  CAS  Google Scholar 

  167. Kwekkeboom D, Krenning EP, de Jong M (2000) Peptide receptor imaging and therapy. J Nucl Med 41(10):1704–1713

    PubMed  CAS  Google Scholar 

  168. Cheson BD (2007) The International Harmonization Project for response criteria in lymphoma clinical trials. Hematol Oncol Clin North Am 21(5):841–854

    Article  PubMed  Google Scholar 

  169. Derenzini E, Musuraca G, Fanti S, Stefoni V, Tani M, Alinari L et al (2008) Pretransplantation positron emission tomography scan is the main predictor of autologous stem cell transplantation outcome in aggressive B-cell non-Hodgkin’s lymphoma. Cancer 113(9):2496–2503

    Article  PubMed  Google Scholar 

  170. Green AJ, Francis RJ, Baig S, Begent RH (2008) Semiautomatic volume of interest drawing for (18)F-FDG image analysis-method and preliminary results. Eur J Nucl Med Mol Imaging 35(2):393–406

    Article  PubMed  CAS  Google Scholar 

  171. Flynn AA, Green AJ, Pedley RB, Boxer GM, Dearling J, Watson R et al (2002) A model-based approach for the optimization of radioimmunotherapy through antibody design and radionuclide selection. Cancer 94(4 Suppl):1249–1257

    Article  PubMed  CAS  Google Scholar 

  172. Pedley RB, Hill SA, Boxer GM, Flynn AA, Boden R, Watson R et al (2001) Eradication of colorectal xenografts by combined radioimmunotherapy and combretastatin a-4 3-O-phosphate. Cancer Res 61(12):4716–4722

    PubMed  CAS  Google Scholar 

  173. Wong JY (2006) Basic immunology of antibody targeted radiotherapy. Int J Radiat Oncol Biol Phys 66(2 Suppl):S8–14

    PubMed  CAS  Google Scholar 

  174. Sharkey RM, Goldenberg DM (2008) Use of antibodies and immunoconjugates for the therapy of more accessible cancers. Adv Drug Deliv Rev 60(12):1407–1420

    Article  PubMed  CAS  Google Scholar 

  175. Boehm MK, Mayans MO, Thornton JD, Begent RH, Keep PA, Perkins SJ (1996) Extended glycoprotein structure of the seven domains in human carcinoembryonic antigen by X-ray and neutron solution scattering and an automated curve fitting procedure: implications for cellular adhesion. J Mol Biol 259(4):718–736

    Article  PubMed  CAS  Google Scholar 

  176. Chester KA, Begent RH, Robson L, Keep P, Pedley RB, Boden JA et al (1994) Phage libraries for generation of clinically useful antibodies. Lancet 343(8895):455–456

    Article  PubMed  CAS  Google Scholar 

  177. Blakey DC, Burke PJ, Davies DH, Dowell RI, Melton RG, Springer CJ et al (1995) Antibody-directed enzyme prodrug therapy (ADEPT) for treatment of major solid tumor disease. Biochem Soc Trans 23(4):1047–1050

    PubMed  CAS  Google Scholar 

  178. Tolner B, Smith L, Begent RH, Chester KA (2006) Production of recombinant protein in Pichia pastoris by fermentation. Nat Protoc 1(2):1006–1021

    Article  PubMed  CAS  Google Scholar 

  179. Tolner B, Smith L, Begent RH, Chester KA (2006) Expanded-bed adsorption immobilized-metal affinity chromatography. Nat Protoc 1(3):1213–1222

    Article  PubMed  CAS  Google Scholar 

  180. Springer CJ, Dowell R, Burke PJ, Hadley E, Davis DH, Blakey DC et al (1995) Optimization of alkylating agent prodrugs derived from phenol and aniline mustards: a new clinical candidate prodrug (ZD2767) for antibody-directed enzyme prodrug therapy (ADEPT). J Med Chem 38(26):5051–5065

    Article  PubMed  CAS  Google Scholar 

  181. Boehm MK, Corper AL, Wan T, Sohi MK, Sutton BJ, Thornton JD et al (2000) Crystal structure of the anti-(carcinoembryonic antigen) single-chain Fv antibody MFE-23 and a model for antigen binding based on intermolecular contacts. Biochem J 346(Pt 2):519–528

    Article  PubMed  CAS  Google Scholar 

  182. Webley SD, Francis RJ, Pedley RB, Sharma SK, Begent RH, Hartley JA et al (2001) Measurement of the critical DNA lesions produced by antibody-directed enzyme prodrug therapy (ADEPT) in vitro, in vivo and in clinical material. Br J Cancer 84(12):1671–1676

    Article  PubMed  CAS  Google Scholar 

  183. Sharma SK, Pedley RB, Bhatia J, Boxer GM, El-Emir E, Qureshi U et al (2005) Sustained tumor regression of human colorectal cancer xenografts using a multifunctional mannosylated fusion protein in antibody-directed enzyme prodrug therapy. Clin Cancer Res 11(2 Pt 1):814–825

    PubMed  CAS  Google Scholar 

  184. Mayer A, Francis RJ, Sharma SK, Tolner B, Springer CJ, Martin J et al (2006) A phase I study of single administration of antibody-directed enzyme prodrug therapy with the recombinant anti-carcinoembryonic antigen antibody-enzyme fusion protein MFECP1 and a bis-iodo phenol mustard prodrug. Clin Cancer Res 12(21):6509–6516

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This was work was supported by Cancer Research UK, the UCL Experimental Cancer Medicine Centre, the UCL/KCL Comprehensive Cancer Imaging Centre, the UCL Cancer Institute Research Trust and in part by the NIHR UCLH Comprehensive Biomedical Centre.

Conflict of interest statement

No funds were received to produce this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Begent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dancey, G., Begent, R.H. & Meyer, T. Imaging in targeted delivery of therapy to cancer. Targ Oncol 4, 201–217 (2009). https://doi.org/10.1007/s11523-009-0119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-009-0119-8

Keywords

Navigation