Skip to main content
Log in

Targeted therapies in multiple myeloma

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Increasing knowledge of the biology of multiple myeloma led the way for the development of novel drugs that have changed the management of the disease. New treatments target not only to the malignant plasma cell but also target the interactions of myeloma cells with their microenvironment. Several preclinical studies have identified potential targets and drugs are developed that act on pathways crucial for myeloma cell survival, proliferation, migration and drug resistance. The identification of active agents in the laboratory is followed by rationally designed clinical studies that validate these drugs, either as single agents or in combinations with other active drugs. These novel agents may be either small molecules or monoclonal antibodies targeting receptors, kinase activity of receptors or key molecules within critical pathways, intracellular maintenance mechanisms and immune modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK et al (2008) Improved survival in multiple myeloma and the impact of novel therapies. Blood 111:2516–2520

    Article  CAS  PubMed  Google Scholar 

  2. Mitsiades CS, McMillin DW, Klippel S, Hideshima T, Chauhan D, Richardson PG et al (2007) The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am 21:1007–1034 vii–viii

    Article  PubMed  Google Scholar 

  3. Podar K, Richardson PG, Hideshima T, Chauhan D, Anderson KC (2007) The malignant clone and the bone-marrow environment. Best Pract Res Clin Haematol 20:597–612

    Article  CAS  PubMed  Google Scholar 

  4. Hideshima T, Podar K, Chauhan D, Anderson KC (2005) Cytokines and signal transduction. Best Pract Res Clin Haematol 18:509–524

    Article  CAS  PubMed  Google Scholar 

  5. Klein B, Zhang XG, Lu ZY, Bataille R (1995) Interleukin-6 in human multiple myeloma. Blood 85:863–872

    CAS  PubMed  Google Scholar 

  6. Trikha M, Corringham R, Klein B, Rossi JF (2003) Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res 9:4653–4665

    CAS  PubMed  Google Scholar 

  7. Voorhees PM, Chen Q, Kuhn DJ, Small GW, Hunsucker SA, Strader JS et al (2007) Inhibition of interleukin-6 signaling with CNTO 328 enhances the activity of bortezomib in preclinical models of multiple myeloma. Clin Cancer Res 13:6469–6478

    Article  CAS  PubMed  Google Scholar 

  8. Demartis A, Bernassola F, Savino R, Melino G, Ciliberto G (1996) Interleukin 6 receptor superantagonists are potent inducers of human multiple myeloma cell death. Cancer Res 56:4213–4218

    CAS  PubMed  Google Scholar 

  9. Honemann D, Chatterjee M, Savino R, Bommert K, Burger R, Gramatzki M et al (2001) The IL-6 receptor antagonist SANT-7 overcomes bone marrow stromal cell-mediated drug resistance of multiple myeloma cells. Int J Cancer 93:674–680

    Article  CAS  PubMed  Google Scholar 

  10. Tassone P, Neri P, Burger R, Savino R, Shammas M, Catley L et al (2005) Combination therapy with interleukin-6 receptor superantagonist Sant7 and dexamethasone induces antitumor effects in a novel SCID-hu In vivo model of human multiple myeloma. Clin Cancer Res 11:4251–4258

    Article  CAS  PubMed  Google Scholar 

  11. Bohula EA, Playford MP, Macaulay VM (2003) Targeting the type 1 insulin-like growth factor receptor as anti-cancer treatment. Anticancer Drugs 14:669–682

    Article  CAS  PubMed  Google Scholar 

  12. Riedemann J, Macaulay VM (2006) IGF1R signalling and its inhibition. Endocr Relat Cancer 13 Suppl 1:S33–43

    Article  CAS  Google Scholar 

  13. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M et al (2004) Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 5:221–230

    Article  CAS  PubMed  Google Scholar 

  14. Menu E, Jernberg-Wiklund H, Stromberg T, De Raeve H, Girnita L, Larsson O et al (2006) Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model. Blood 107:655–660

    Article  CAS  PubMed  Google Scholar 

  15. Menu E, Jernberg-Wiklund H, De Raeve H, De Leenheer E, Coulton L, Gallagher O et al (2007) Targeting the IGF-1R using picropodophyllin in the therapeutical 5T2MM mouse model of multiple myeloma: beneficial effects on tumor growth, angiogenesis, bone disease and survival. Int J Cancer 121:1857–1861

    Article  CAS  PubMed  Google Scholar 

  16. Rowinsky EK, Youssoufian H, Tonra JR, Solomon P, Burtrum D, Ludwig DL (2007) IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor. Clin Cancer Res 13:5549s–5555s

    Article  CAS  PubMed  Google Scholar 

  17. Westendorf JJ, Ahmann GJ, Lust JA, Tschumper RC, Greipp PR, Katzmann JA et al (1995) Molecular and biological role of CD40 in multiple myeloma. Curr Top Microbiol Immunol 194:63–72

    CAS  PubMed  Google Scholar 

  18. Pellat-Deceunynck C, Bataille R, Robillard N, Harousseau JL, Rapp MJ, Juge-Morineau N et al (1994) Expression of CD28 and CD40 in human myeloma cells: a comparative study with normal plasma cells. Blood 84:2597–2603

    CAS  PubMed  Google Scholar 

  19. Tai YT, Podar K, Gupta D, Lin B, Young G, Akiyama M et al (2002) CD40 activation induces p53-dependent vascular endothelial growth factor secretion in human multiple myeloma cells. Blood 99:1419–1427

    Article  CAS  PubMed  Google Scholar 

  20. Tai YT, Podar K, Mitsiades N, Lin B, Mitsiades C, Gupta D et al (2003) CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3-kinase/AKT/NF-kappa B signaling. Blood 101:2762–2769

    Article  CAS  PubMed  Google Scholar 

  21. Urashima M, Chauhan D, Hatziyanni M, Ogata A, Hollenbaugh D, Aruffo A et al (1996) CD40 ligand triggers interleukin-6 mediated B cell differentiation. Leuk Res 20:507–515

    Article  CAS  PubMed  Google Scholar 

  22. Tai YT, Catley LP, Mitsiades CS, Burger R, Podar K, Shringpaure R et al (2004) Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications. Cancer Res 64:2846–2852

    Article  CAS  PubMed  Google Scholar 

  23. Tai YT, Li X, Tong X, Santos D, Otsuki T, Catley L et al (2005) Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res 65:5898–5906

    Article  CAS  PubMed  Google Scholar 

  24. Hayashi T, Treon SP, Hideshima T, Tai YT, Akiyama M, Richardson P et al (2003) Recombinant humanized anti-CD40 monoclonal antibody triggers autologous antibody-dependent cell-mediated cytotoxicity against multiple myeloma cells. Br J Haematol 121:592–596

    Article  CAS  PubMed  Google Scholar 

  25. Tai YT, Li XF, Catley L, Coffey R, Breitkreutz I, Bae J et al (2005) Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res 65:11712–11720

    Article  CAS  PubMed  Google Scholar 

  26. Hsi ED, Steinle R, Balasa B, Szmania S, Draksharapu A, Shum BP et al (2008) CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res 14:2775–2784

    Article  CAS  PubMed  Google Scholar 

  27. Tai YT, Dillon M, Song W, Leiba M, Li XF, Burger P et al (2008) Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 112:1329–1337

    Article  CAS  PubMed  Google Scholar 

  28. Song W, Tai Y-T, Sasada T, Burger P, Fulciniti M, Li X et al (2007) Identification of CS1 peptides for induction of antigen-specific CTLs in multiple myeloma. ASH Annual Meeting Abstracts 110:1611

    Google Scholar 

  29. Rice A, Dillon M, van Abbema A, Jesaitis L, Wong M, Lawson S et al (2006) Eradication of tumors in pre-clinical models of multiple myeloma by anti-CS1 monoclonal antibody HuLuc63: mechanism of action studies. ASH Annual Meeting Abstracts 108:3503

    Google Scholar 

  30. Bensinger W, Zonder J, Singhal S, Mohrbacher A, Dean RM, van Rhee F et al (2007) Phase I trial of HuLuc63 in multiple myeloma. ASH Annual Meeting Abstracts 110:1180

    Google Scholar 

  31. Ribatti D, Vacca A, Dammacco F, English D (2003) Angiogenesis and anti-angiogenesis in hematological malignancies. J Hematother Stem Cell Res 12:11–22

    Article  CAS  PubMed  Google Scholar 

  32. Ribatti D, Nico B, Vacca A (2006) Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 25:4257–4266

    Article  CAS  PubMed  Google Scholar 

  33. Rajkumar SV, Mesa RA, Fonseca R, Schroeder G, Plevak MF, Dispenzieri A et al (2002) Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res 8:2210–2216

    PubMed  Google Scholar 

  34. Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ et al (2000) Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 6:3111–3116

    CAS  PubMed  Google Scholar 

  35. Podar K, Anderson KC (2005) The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 105:1383–1395

    Article  CAS  PubMed  Google Scholar 

  36. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL et al (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349:427–434

    Article  CAS  PubMed  Google Scholar 

  37. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  CAS  PubMed  Google Scholar 

  38. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    Article  CAS  PubMed  Google Scholar 

  39. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  CAS  PubMed  Google Scholar 

  40. Raschko M, Markovina S, Miyamoto S, Longo W, Williams E, McFarland T et al (2007) Phase II trial of bevacizumab combined with low dose dexamethasone and lenalidomide (BEV/REV/DEX) for relapsed or refractory myeloma (MM). ASH Annual Meeting Abstracts 110:1173

    Google Scholar 

  41. Kovacs MJ, Reece DE, Marcellus D, Meyer RM, Mathews S, Dong RP et al (2006) A phase II study of ZD6474 (Zactima, a selective inhibitor of VEGFR and EGFR tyrosine kinase in patients with relapsed multiple myeloma—NCIC CTG IND.145. Invest New Drugs 24:529–535

    CAS  PubMed  Google Scholar 

  42. Zangari M, Anaissie E, Stopeck A, Morimoto A, Tan N, Lancet J et al (2004) Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res 10:88–95

    Article  CAS  PubMed  Google Scholar 

  43. Podar K, Tonon G, Sattler M, Tai YT, Legouill S, Yasui H et al (2006) The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci U S A 103:19478–19483

    Article  CAS  PubMed  Google Scholar 

  44. Morgan GJ, Krishnan B, Jenner M, Davies FE (2006) Advances in oral therapy for multiple myeloma. Lancet Oncol 7:316–325

    Article  CAS  PubMed  Google Scholar 

  45. Avet-Loiseau H, Li JY, Facon T, Brigaudeau C, Morineau N, Maloisel F et al (1998) High incidence of translocations t(11;14)(q13;q32) and t(4;14)(p16;q32) in patients with plasma cell malignancies. Cancer Res 58:5640–5645

    CAS  PubMed  Google Scholar 

  46. Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ et al (2003) In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 101:1520–1529

    Article  CAS  PubMed  Google Scholar 

  47. Grand EK, Chase AJ, Heath C, Rahemtulla A, Cross NC (2004) Targeting FGFR3 in multiple myeloma: inhibition of t(4;14)-positive cells by SU5402 and PD173074. Leukemia 18:962–966

    Article  CAS  PubMed  Google Scholar 

  48. Paterson JL, Li Z, Wen XY, Masih-Khan E, Chang H, Pollett JB et al (2004) Preclinical studies of fibroblast growth factor receptor 3 as a therapeutic target in multiple myeloma. Br J Haematol 124:595–603

    Article  CAS  PubMed  Google Scholar 

  49. Trudel S, Ely S, Farooqi Y, Affer M, Robbiani DF, Chesi M et al (2004) Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood 103:3521–3528

    Article  CAS  PubMed  Google Scholar 

  50. Arnulf B, Ghez D, Leblond V, Choquet S, Belhadj K, Macro M et al (2007) FGFR3 tyrosine kinase inhibitor AB1010 as treatment of t(4;14) multiple myeloma. ASH Annual Meeting Abstracts 110:413

    Google Scholar 

  51. Hideshima T, Catley L, Yasui H, Ishitsuka K, Raje N, Mitsiades C et al (2006) Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 107:4053–4062

    Article  CAS  PubMed  Google Scholar 

  52. Gajate C, Mollinedo F (2007) Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109:711–719

    Article  CAS  PubMed  Google Scholar 

  53. Richardson P, Jakubowiak A, Wolf J, Allerton J, Zonder J, Lonial S et al (2007) Phase I/II report from a multicenter trial of perifosine (KRX-0401) + bortezomib in patients with relapsed or relapsed/refractory multiple myeloma previously treated with bortezomib. ASH Annual Meeting Abstracts 110:1170

    Google Scholar 

  54. Jakubowiak A, Zimmerman T, Alsina M, Richardson P, Kaufman J, Kendall T et al (2007) A Multiple Myeloma Research Consortium (MMRC) multicenter phase I trial of perifosine (KRX-0401) in combination with lenalidomide and dexamethasone in patients with relapsed/refractory multiple myeloma (MM): updated results. ASH Annual Meeting Abstracts 110:1169

    Google Scholar 

  55. Richardson P, Lonial S, Jakubowiak A, Krishnan A, Wolf J, Densmore J et al (2007) Multi-center phase II study of perifosine (KRX-0401) alone and in combination with dexamethasone (dex) for patients with relapsed or relapsed/refractory multiple myeloma (MM): promising activity as combination therapy with manageable toxicity. ASH Annual Meeting Abstracts 110:1164

    Google Scholar 

  56. Yan H, Frost P, Shi Y, Hoang B, Sharma S, Fisher M et al (2006) Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis. Cancer Res 66:2305–2313

    Article  CAS  PubMed  Google Scholar 

  57. Fasolo A, Sessa C (2008) mTOR inhibitors in the treatment of cancer. Expert Opin Investig Drugs 17:1717–1734

    Article  CAS  PubMed  Google Scholar 

  58. Frost P, Moatamed F, Hoang B, Shi Y, Gera J, Yan H et al (2004) In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model. Blood 104:4181–4187

    Article  CAS  PubMed  Google Scholar 

  59. Stromberg T, Dimberg A, Hammarberg A, Carlson K, Osterborg A, Nilsson K et al (2004) Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood 103:3138–3147

    Article  PubMed  CAS  Google Scholar 

  60. Raje N, Kumar S, Hideshima T, Ishitsuka K, Chauhan D, Mitsiades C et al (2004) Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood 104:4188–4193

    Article  CAS  PubMed  Google Scholar 

  61. Francis LK, Alsayed Y, Leleu X, Jia X, Singha UK, Anderson J et al (2006) Combination mammalian target of rapamycin inhibitor rapamycin and HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin has synergistic activity in multiple myeloma. Clin Cancer Res 12:6826–6835

    Article  CAS  PubMed  Google Scholar 

  62. Tai YT, Fulciniti M, Hideshima T, Song W, Leiba M, Li XF et al (2007) Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood 110:1656–1663

    Article  CAS  PubMed  Google Scholar 

  63. Breitkreutz I, Raab MS, Vallet S, Hideshima T, Raje N, Chauhan D et al (2007) Targeting MEK1/2 blocks osteoclast differentiation, function and cytokine secretion in multiple myeloma. Br J Haematol 139:55–63

    Article  CAS  PubMed  Google Scholar 

  64. Chauhan D, Anderson KC (2003) Mechanisms of cell death and survival in multiple myeloma (MM): Therapeutic implications. Apoptosis 8:337–343

    Article  CAS  PubMed  Google Scholar 

  65. Wong WW, Puthalakath H (2008) Bcl-2 family proteins: the sentinels of the mitochondrial apoptosis pathway. IUBMB Life 60:390–397

    Article  CAS  PubMed  Google Scholar 

  66. Chanan-Khan AA, Niesvizky R, Hohl RJ, Zimmerman TM, Christiansen NP, Schiller GJ et al (2004) Randomized multicenter phase 3 trial of high-dose dexamethasone (dex) with or without oblimersen sodium (G3139; Bcl-2 antisense; Genasense) for patients with advanced multiple myeloma (MM). ASH Annual Meeting Abstracts 104:1477

    Google Scholar 

  67. Kline MP, Rajkumar SV, Timm MM, Kimlinger TK, Haug JL, Lust JA et al (2007) ABT-737, an inhibitor of Bcl-2 family proteins, is a potent inducer of apoptosis in multiple myeloma cells. Leukemia 21:1549–1560

    Article  CAS  PubMed  Google Scholar 

  68. Trudel S, Stewart AK, Li Z, Shu Y, Liang SB, Trieu Y et al (2007) The Bcl-2 family protein inhibitor, ABT-737, has substantial antimyeloma activity and shows synergistic effect with dexamethasone and melphalan. Clin Cancer Res 13:621–629

    Article  CAS  PubMed  Google Scholar 

  69. Chauhan D, Velankar M, Brahmandam M, Hideshima T, Podar K, Richardson P et al (2007) A novel Bcl-2/Bcl-X(L)/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene 26:2374–2380

    Article  CAS  PubMed  Google Scholar 

  70. Hideshima T, Chauhan D, Richardson P, Anderson KC (2005) Identification and validation of novel therapeutic targets for multiple myeloma. J Clin Oncol 23:6345–6350

    Article  CAS  PubMed  Google Scholar 

  71. Jabbour E, Kantarjian H, Cortes J (2004) Clinical activity of farnesyl transferase inhibitors in hematologic malignancies: possible mechanisms of action. Leuk Lymphoma 45:2187–2195

    Article  CAS  PubMed  Google Scholar 

  72. Alsina M, Fonseca R, Wilson EF, Belle AN, Gerbino E, Price-Troska T et al (2004) Farnesyltransferase inhibitor tipifarnib is well tolerated, induces stabilization of disease, and inhibits farnesylation and oncogenic/tumor survival pathways in patients with advanced multiple myeloma. Blood 103:3271–3277

    Article  CAS  PubMed  Google Scholar 

  73. Jabbour E, Kantarjian H, Cortes J (2007) Clinical activity of tipifarnib in hematologic malignancies. Expert Opin Investig Drugs 16:381–392

    Article  CAS  PubMed  Google Scholar 

  74. David E, Sun SY, Waller EK, Chen J, Khuri FR, Lonial S (2005) The combination of the farnesyl transferase inhibitor lonafarnib and the proteasome inhibitor bortezomib induces synergistic apoptosis in human myeloma cells that is associated with down-regulation of p-AKT. Blood 106:4322–4329

    Article  CAS  PubMed  Google Scholar 

  75. Sinha R, David E, Zeilter E, Torre C, Kaufman JL, Lonial S (2005) Combination of Akt/PKB inhibition (perifosine) and farnesyl transferase inhibition (tipifarnib) results in increased cell death in myeloma cells lines. ASH Annual Meeting Abstracts 106:1568

    Google Scholar 

  76. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X et al (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A 99:14374–14379

    Article  CAS  PubMed  Google Scholar 

  77. Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr., Lee KP, Boise LH (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107:4907–4916

    Article  CAS  PubMed  Google Scholar 

  78. Cenci S, Sitia R (2007) Managing and exploiting stress in the antibody factory. FEBS Lett 581:3652–3657

    Article  CAS  PubMed  Google Scholar 

  79. Anargyrou K, Dimopoulos MA, Sezer O, Terpos E (2008) Novel anti-myeloma agents and angiogenesis. Leuk Lymphoma 49:677–689

    Article  CAS  PubMed  Google Scholar 

  80. Terpos E, Sezer O, Croucher P, Dimopoulos MA (2007) Myeloma bone disease and proteasome inhibition therapies. Blood 110:1098–1104

    Article  CAS  PubMed  Google Scholar 

  81. Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew Chem Int Ed Engl 42:355–357

    Article  CAS  PubMed  Google Scholar 

  82. Williams PG, Buchanan GO, Feling RH, Kauffman CA, Jensen PR, Fenical W (2005) New cytotoxic salinosporamides from the marine Actinomycete Salinispora tropica. J Org Chem 70:6196–6203

    Article  CAS  PubMed  Google Scholar 

  83. Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8:407–419

    Article  CAS  PubMed  Google Scholar 

  84. Chauhan D, Hideshima T, Anderson KC (2006) A novel proteasome inhibitor NPI-0052 as an anticancer therapy. Br J Cancer 95:961–965

    Article  CAS  PubMed  Google Scholar 

  85. Chauhan D, Singh A, Brahmandam M, Podar K, Hideshima T, Richardson P et al (2008) Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 111:1654–1664

    Article  CAS  PubMed  Google Scholar 

  86. Demo SD, Kirk CJ, Aujay MA, Buchholz TJ, Dajee M, Ho MN et al (2007) Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67:6383–6391

    Article  CAS  PubMed  Google Scholar 

  87. Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM et al (2007) Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110:3281–3290

    Article  CAS  PubMed  Google Scholar 

  88. Stapnes C, Doskeland AP, Hatfield K, Ersvaer E, Ryningen A, Lorens JB et al (2007) The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. Br J Haematol 136:814–828

    Article  CAS  PubMed  Google Scholar 

  89. Alsina M, Trudel S, Vallone M, Molineaux C, Kunkel L, Goy A (2007) Phase 1 single agent antitumor activity of twice weekly consecutive day dosing of the proteasome inhibitor carfilzomib (PR-171) in hematologic malignancies. ASH Annual Meeting Abstracts 110:411

    Google Scholar 

  90. Orlowski RZ, Stewart K, Vallone M, Molineaux C, Kunkel L, Gericitano J et al (2007) Safety and antitumor efficacy of the proteasome inhibitor carfilzomib (PR-171) dosed for five consecutive days in hematologic malignancies: phase 1 results. ASH Annual Meeting Abstracts 110:409

    Google Scholar 

  91. Mitsiades N, Mitsiades CS, Richardson PG, McMullan C, Poulaki V, Fanourakis G et al (2003) Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 101:4055–4062

    Article  CAS  PubMed  Google Scholar 

  92. Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528

    Article  CAS  PubMed  Google Scholar 

  93. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A 101:540–545

    Article  CAS  PubMed  Google Scholar 

  94. Richardson P, Mitsiades C, Colson K, Reilly E, McBride L, Chiao J et al (2008) Phase I trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) in patients with advanced multiple myeloma. Leuk Lymphoma 49:502–507

    Article  CAS  PubMed  Google Scholar 

  95. Badros A, Philip S, Niesvizky R, Goloubeva O, Harris C, Zweibel J et al (2007) Phase I trial of suberoylanilide hydroxamic acid (SAHA) + bortezomib (Bort) in relapsed multiple myeloma (MM) patients (pts). ASH Annual Meeting Abstracts 110:1168

    Google Scholar 

  96. Weber DM, Jagannath S, Mazumder A, Sobecks R, Schiller GJ, Gavino M et al (2007) Phase I trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) in combination with bortezomib in patients with advanced multiple myeloma. ASH Annual Meeting Abstracts 110:1172

    Google Scholar 

  97. Catley L, Weisberg E, Tai YT, Atadja P, Remiszewski S, Hideshima T et al (2003) NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood 102:2615–2622

    Article  CAS  PubMed  Google Scholar 

  98. Maiso P, Carvajal-Vergara X, Ocio EM, Lopez-Perez R, Mateo G, Gutierrez N et al (2006) The histone deacetylase inhibitor LBH589 is a potent antimyeloma agent that overcomes drug resistance. Cancer Res 66:5781–5789

    Article  CAS  PubMed  Google Scholar 

  99. Mitsiades CS, Hayden PJ, Anderson KC, Richardson PG (2007) From the bench to the bedside: emerging new treatments in multiple myeloma. Best Pract Res Clin Haematol 20:797–816

    Article  CAS  PubMed  Google Scholar 

  100. Prince HM, Bishton M, Harrison S (2008) The potential of histone deacetylase inhibitors for the treatment of multiple myeloma. Leuk Lymphoma 49:385–387

    Article  CAS  PubMed  Google Scholar 

  101. Lentzsch S, Anderson G, Li C, Belani CP, Mapara MY, Roodman D (2005) Combination of proteasome inhibitor PS 341 (Velcade(R)) with histone acetylase inhibitor (HDAC) PXD 101 shows superior anti-myeloma activity and inhibits osteoclastogenesis. ASH Annual Meeting Abstracts 106:2488

    Google Scholar 

  102. Khan SB, Maududi T, Barton K, Ayers J, Alkan S (2004) Analysis of histone deacetylase inhibitor, depsipeptide (FR901228), effect on multiple myeloma. Br J Haematol 125:156–161

    Article  CAS  PubMed  Google Scholar 

  103. Feng R, Ma H, Hassig CA, Payne JE, Smith ND, Mapara MY et al (2008) KD5170, a novel mercaptoketone-based histone deacetylase inhibitor, exerts antimyeloma effects by DNA damage and mitochondrial signaling. Mol Cancer Ther 7:1494–1505

    Article  CAS  PubMed  Google Scholar 

  104. Solit DB, Rosen N (2006) Hsp90: a novel target for cancer therapy. Curr Top Med Chem 6:1205–1214

    Article  CAS  PubMed  Google Scholar 

  105. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Kung AL, Davies FE et al (2006) Antimyeloma activity of heat shock protein-90 inhibition. Blood 107:1092–1100

    Article  CAS  PubMed  Google Scholar 

  106. Duus J, Bahar HI, Venkataraman G, Ozpuyan F, Izban KF, Al-Masri H et al (2006) Analysis of expression of heat shock protein-90 (HSP90) and the effects of HSP90 inhibitor (17-AAG) in multiple myeloma. Leuk Lymphoma 47:1369–1378

    Article  CAS  PubMed  Google Scholar 

  107. Davenport EL, Moore HE, Dunlop AS, Sharp SY, Workman P, Morgan GJ et al (2007) Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells. Blood 110:2641–2649

    Article  CAS  PubMed  Google Scholar 

  108. Patterson J, Palombella VJ, Fritz C, Normant E (2008) IPI-504, a novel and soluble HSP-90 inhibitor, blocks the unfolded protein response in multiple myeloma cells. Cancer Chemother Pharmacol 61:923–932

    Article  CAS  PubMed  Google Scholar 

  109. Richardson PG, Chanan-Khan AA, Alsina M, Doss D, Landrigan B, Kettner D et al (2005) Safety and activity of KOS-953 in patients with relapsed refractory multiple myeloma (MM): interim results of a phase 1 trial. ASH Annual Meeting Abstracts 106:361

    Google Scholar 

  110. Richardson PG, Chanan-Khan A, Lonial S, Krishman A, Carroll M, Cropp GF et al (2007) Tanespimycin (T) + gortezomib (BZ) in multiple myeloma (MM): confirmation of the recommended dose using a novel formulation. ASH Annual Meeting Abstracts 110:1165

    Google Scholar 

  111. Pacey S, Banerji U, Judson I, Workman P (2006) Hsp90 inhibitors in the clinic. Handb Exp Pharmacol 2006:331–358

    Article  Google Scholar 

  112. Stuhmer T, Zollinger A, Siegmund D, Chatterjee M, Grella E, Knop S et al (2008) Signalling profile and antitumour activity of the novel Hsp90 inhibitor NVP-AUY922 in multiple myeloma. Leukemia 22:1604–1612

    Article  CAS  PubMed  Google Scholar 

  113. Huston A, Leleu X, Jia X, Moreau AS, Ngo HT, Runnels J et al (2008) Targeting Akt and heat shock protein 90 produces synergistic multiple myeloma cell cytotoxicity in the bone marrow microenvironment. Clin Cancer Res 14:865–874

    Article  CAS  PubMed  Google Scholar 

  114. Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P et al (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341:1565–1571

    Article  CAS  PubMed  Google Scholar 

  115. Bartlett JB, Dredge K, Dalgleish AG (2004) The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 4:314–322

    Article  CAS  PubMed  Google Scholar 

  116. Richardson PG, Schlossman RL, Weller E, Hideshima T, Mitsiades C, Davies F et al (2002) Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 100:3063–3067

    Article  CAS  PubMed  Google Scholar 

  117. Schey SA, Fields P, Bartlett JB, Clarke IA, Ashan G, Knight RD et al (2004) Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J Clin Oncol 22:3269–3276

    Article  CAS  PubMed  Google Scholar 

  118. Anderson KC (2005) Lenalidomide and thalidomide: mechanisms of action—similarities and differences. Semin Hematol 42:S3–8

    Article  CAS  PubMed  Google Scholar 

  119. Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC (2004) Advances in biology of multiple myeloma: clinical applications. Blood 104:607–618

    Article  CAS  PubMed  Google Scholar 

  120. Payvandi F, Wu L, Haley M, Schafer PH, Zhang LH, Chen RS et al (2004) Immunomodulatory drugs inhibit expression of cyclooxygenase-2 from TNF-alpha, IL-1beta, and LPS-stimulated human PBMC in a partially IL-10-dependent manner. Cell Immunol 230:81–88

    Article  CAS  PubMed  Google Scholar 

  121. Dredge K, Marriott JB, Macdonald CD, Man HW, Chen R, Muller GW et al (2002) Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer 87:1166–1172

    Article  CAS  PubMed  Google Scholar 

  122. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T et al (2002) Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99:4525–4530

    Article  CAS  PubMed  Google Scholar 

  123. Mitsiades CS, Mitsiades N (2004) CC-5013 (Celgene). Curr Opin Investig Drugs 5:635–647

    CAS  PubMed  Google Scholar 

  124. Gandhi AK, Kang J, Naziruddin S, Parton A, Schafer PH, Stirling DI (2006) Lenalidomide inhibits proliferation of Namalwa CSN.70 cells and interferes with Gab1 phosphorylation and adaptor protein complex assembly. Leuk Res 30:849–858

    Article  CAS  PubMed  Google Scholar 

  125. Mitsiades CS, Mitsiades NS, Richardson PG, Munshi NC, Anderson KC (2007) Multiple myeloma: a prototypic disease model for the characterization and therapeutic targeting of interactions between tumor cells and their local microenvironment. J Cell Biochem 101:950–968

    Article  CAS  PubMed  Google Scholar 

  126. Gockel HR, Lugering A, Heidemann J, Schmidt M, Domschke W, Kucharzik T et al (2004) Thalidomide induces apoptosis in human monocytes by using a cytochrome c-dependent pathway. J Immunol 172:5103–5109

    CAS  PubMed  Google Scholar 

  127. Haslett PA, Corral LG, Albert M, Kaplan G (1998) Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med 187:1885–1892

    Article  CAS  PubMed  Google Scholar 

  128. Haslett PA, Hanekom WA, Muller G, Kaplan G (2003) Thalidomide and a thalidomide analogue drug costimulate virus-specific CD8+ T cells in vitro. J Infect Dis 187:946–955

    Article  CAS  PubMed  Google Scholar 

  129. Haslett PA, Klausner JD, Makonkawkeyoon S, Moreira A, Metatratip P, Boyle B et al (1999) Thalidomide stimulates T cell responses and interleukin 12 production in HIV-infected patients. AIDS Res Hum Retroviruses 15:1169–1179

    Article  CAS  PubMed  Google Scholar 

  130. Corral LG, Haslett PA, Muller GW, Chen R, Wong LM, Ocampo CJ et al (1999) Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol 163:380–386

    CAS  PubMed  Google Scholar 

  131. Corral LG, Kaplan G (1999) Immunomodulation by thalidomide and thalidomide analogues. Ann Rheum Dis 58 Suppl 1:I107–I113

    Article  Google Scholar 

  132. LeBlanc R, Hideshima T, Catley LP, Shringarpure R, Burger R, Mitsiades N et al (2004) Immunomodulatory drug co-stimulates T cells via the B7-CD28 pathway. Blood 103:1787–1790

    Article  CAS  PubMed  Google Scholar 

  133. Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT et al (2001) Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98:210–216

    Article  CAS  PubMed  Google Scholar 

  134. Stirling D (2001) Thalidomide: a novel template for anticancer drugs. Semin Oncol 28:602–606

    Article  CAS  PubMed  Google Scholar 

  135. Vacca A, Scavelli C, Montefusco V, Di Pietro G, Neri A, Mattioli M et al (2005) Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 23:5334–5346

    Article  CAS  PubMed  Google Scholar 

  136. Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438:937–945

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

No funds were received in support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstathios Kastritis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kastritis, E., Charidimou, A., Varkaris, A. et al. Targeted therapies in multiple myeloma. Targ Oncol 4, 23–36 (2009). https://doi.org/10.1007/s11523-008-0102-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-008-0102-9

Keywords

Navigation