Skip to main content

Advertisement

Log in

The clinical challenge of imatinib resistance in chronic myeloid leukemia: emerging strategies with new targeted agents

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Chronic myelogenous leukemia (CML) is a progressive and often fatal hematopoietic neoplasm. The disease is characterized by the presence of the Philadelphia chromosome, which arises following a balanced translocation between chromosomes 9 and 22, creating the BCR-ABL fusion gene. It is often stated that the only proven curative option is allogeneic stem cell transplantation (allo-SCT), which is indicated for only a limited subset of patients. The Bcr-Abl tyrosine kinase inhibitor (TKI) imatinib mesylate (IM) represented a major advance over conventional CML therapy. Following IM treatment, more than 90% of patients obtain complete hematologic response, and 70–80% of patients achieve a complete cytogenetic response. Resistance to IM represents an increasing clinical challenge and is often a result of point mutations causing a conformation change in Bcr-Abl, which impair IM binding. Novel targeted agents designed to overcome IM resistance, including multitargeted TKIs and farnesyl transferase inhibitors, are in various phases of development. Dasatinib, which has recently become available in the clinic, is a Bcr-Abl TKI that also inhibits Src, c-Kit, platelet-derived growth factor receptor, and ephrin A receptor kinases. In a phase II randomized trial in patients resistant or intolerant to IM, patients receiving dasatinib had better hematologic and cytogenetic responses than those on high-dose IM, irrespective of the presence or absence of mutations. Nilotinib has also shown promising activity. Combining IM with conventional chemotherapy, interferon, and targeted agents including TKIs is being actively pursued. Diagnostic testing may enable individualized targeted treatment so that patients receive the most effective agent first-line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mughal TI, Goldman JM (2006) Chronic myeloid leukemia: why does it evolve from chronic phase to blast transformation? Front Biosci 11:198–208

    PubMed  CAS  Google Scholar 

  2. Hill JM, Meehan KR (1999) Chronic myelogenous leukemia. Curable with early diagnosis and treatment. Postgrad Med 106:149–152, 157–159

    Article  PubMed  CAS  Google Scholar 

  3. Faderl S, Talpaz M, Estrov Z, Kantarjian HM (1999) Chronic myelogenous leukemia: biology and therapy. Ann Intern Med 131:207–219

    PubMed  CAS  Google Scholar 

  4. Faderl S, Kantarjian HM, Talpaz M (1999) Chronic myelogenous leukemia: update on biology and treatment. Oncology (Williston Park) 13:169–180

    CAS  Google Scholar 

  5. Pasternak G, Hochhaus A, Schultheis B, Hehlmann R (1998) Chronic myelogenous leukemia: molecular and cellular aspects. J Cancer Res Clin Oncol 124:643–660

    Article  PubMed  CAS  Google Scholar 

  6. Barnes DJ, Melo JV (2002) Cytogenetic and molecular genetic aspects of chronic myeloid leukaemia. Acta Haematol 108:180–202

    Article  PubMed  CAS  Google Scholar 

  7. Melo JV, Hughes TP, Apperley JF (2003) Chronic myeloid leukemia. Hematology Am Soc Hematol Educ Program:132–152

  8. Pendergast AM, Quilliam LA, Cripe LD et al (1993) BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 75:175–185

    Article  PubMed  CAS  Google Scholar 

  9. Puil L, Liu J, Gish G et al (1994) Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 13:764–773

    PubMed  CAS  Google Scholar 

  10. Pelicci G, Lanfrancone L, Salcini AE et al (1995) Constitutive phosphorylation of Shc proteins in human tumors. Oncogene 11:899–907

    PubMed  CAS  Google Scholar 

  11. Oda T, Heaney C, Hagopian JR et al (1994) Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem 269:22925–22928

    PubMed  CAS  Google Scholar 

  12. Bhat A, Kolibaba K, Oda T et al (1997) Interactions of CBL with BCR-ABL and CRKL in BCR-ABL-transformed myeloid cells. J Biol Chem 272:16170–16175

    Article  PubMed  CAS  Google Scholar 

  13. Marais R, Light Y, Paterson HF, Marshall CJ (1995) Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 14:3136–3145

    PubMed  CAS  Google Scholar 

  14. Skorski T, Kanakaraj P, Nieborowska-Skorska M et al (1995) Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86:726–736

    PubMed  CAS  Google Scholar 

  15. Skorski T, Bellacosa A, Nieborowska-Skorska M et al (1997) Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 16:6151–6161

    Article  PubMed  CAS  Google Scholar 

  16. Jonuleit T, van der Kuip H, Miething C et al (2000) Bcr-Abl kinase down-regulates cyclin-dependent kinase inhibitor p27 in human and murine cell lines. Blood 96:1933–1939

    PubMed  CAS  Google Scholar 

  17. Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88:435–437

    Article  PubMed  CAS  Google Scholar 

  18. Komatsu N, Watanabe T, Uchida M et al (2003) A member of Forkhead transcription factor FKHRL1 is a downstream effector of STI571-induced cell cycle arrest in BCR-ABL-expressing cells. J Biol Chem 278:6411–6419

    Article  PubMed  CAS  Google Scholar 

  19. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL (1996) Constitutive activation of STAT5 by the Bcr-Abl oncogene in chronic myelogenous leukemia. Oncogene 13:247–254

    PubMed  CAS  Google Scholar 

  20. Ilaria RL Jr, Van Etten RA (1996) P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 271:31704–31710

    Article  PubMed  CAS  Google Scholar 

  21. Frank DA, Varticovski L (1996) BCR/abl leads to the constitutive activation of Stat proteins, and shares an epitope with tyrosine phosphorylated Stats. Leukemia 10:1724–1730

    PubMed  CAS  Google Scholar 

  22. Klejman A, Schreiner SJ, Nieborowska-Skorska M et al (2002) The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J 21:5766–5774

    Article  PubMed  CAS  Google Scholar 

  23. Horita M, Andreu EJ, Benito A et al (2000) Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med 191:977–984

    Article  PubMed  CAS  Google Scholar 

  24. Nieborowska-Skorska M, Hoser G, Kossev P, Wasik MA, Skorski T (2002) Complementary functions of the antiapoptotic protein A1 and serine/threonine kinase pim-1 in the BCR/ABL-mediated leukemogenesis. Blood 99:4531–4539

    Article  PubMed  CAS  Google Scholar 

  25. Menssen A, Hermeking H (2002) Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci USA 99:6274–6279

    Article  PubMed  CAS  Google Scholar 

  26. Sawyers CL, Callahan W, Witte ON (1992) Dominant negative MYC blocks transformation by ABL oncogenes. Cell 70:901–910

    Article  PubMed  CAS  Google Scholar 

  27. Afar DE, Goga A, McLaughlin J, Witte ON, Sawyers CL (1994) Differential complementation of Bcr-Abl point mutants with c-Myc. Science 264:424–426

    Article  PubMed  CAS  Google Scholar 

  28. Xie S, Wang Y, Liu J et al (2001) Involvement of Jak2 tyrosine phosphorylation in Bcr-Abl transformation. Oncogene 20:6188–6195

    Article  PubMed  CAS  Google Scholar 

  29. Pendergast AM, Muller AJ, Havlik MH, Maru Y, Witte ON (1991) BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. Cell 66:161–171

    Article  PubMed  CAS  Google Scholar 

  30. Skorski T, Nieborowska-Skorska M, Wlodarski P et al (1996) Blastic transformation of p53-deficient bone marrow cells by p210bcr/abl tyrosine kinase. Proc Natl Acad Sci USA 93:13137–13142

    Article  PubMed  CAS  Google Scholar 

  31. Hernandez-Boluda JC, Cervantes F, Colomer D et al (2003) Genomic p16 abnormalities in the progression of chronic myeloid leukemia into blast crisis: a sequential study in 42 patients. Exp Hematol 31:204–210

    Article  PubMed  CAS  Google Scholar 

  32. Serrano M, Lee H, Chin L et al (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85:27–37

    Article  PubMed  CAS  Google Scholar 

  33. Beck Z, Kiss A, Toth FD et al (2000) Alterations of P53 and RB genes and the evolution of the accelerated phase of chronic myeloid leukemia. Leuk Lymphoma 38:587–597

    PubMed  CAS  Google Scholar 

  34. Branford S, Rudzki Z, Walsh S et al (2003) Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 102:276–283

    Article  PubMed  CAS  Google Scholar 

  35. Nicolini FE, Corm S, Le QH et al (2006) Mutation status and clinical outcome of 89 imatinib mesylate-resistant chronic myelogenous leukemia patients: a retrospective analysis from the French intergroup of CML (Fi(phi)-LMC GROUP). Leukemia 20:1061–1066

    Article  PubMed  CAS  Google Scholar 

  36. Elrick LJ, Hamilton A, Deininger MW, Holyoake TL (2004) Imatinib mesylate does not inhibit BCR-ABL kinase activity in CML stem cells in vitro. Blood 104:546a (Abstract 1979)

    Google Scholar 

  37. Cortes JE, Talpaz M, Kantarjian H (1996) Chronic myelogenous leukemia: a review. Am J Med 100:555–570

    Article  PubMed  CAS  Google Scholar 

  38. Gratwohl A, Hermans J, Niederwieser D et al (1993) Bone marrow transplantation for chronic myeloid leukemia: long-term results. Chronic Leukemia Working Party of the European Group for Bone Marrow Transplantation. Bone Marrow Transplant 12:509–516

    PubMed  CAS  Google Scholar 

  39. Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247:824–830

    Article  PubMed  CAS  Google Scholar 

  40. Kelliher MA, McLaughlin J, Witte ON, Rosenberg N (1990) Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci USA 87:6649–6653

    Article  PubMed  CAS  Google Scholar 

  41. Kantarjian H, Sawyers C, Hochhaus A et al (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346:645–652

    Article  PubMed  CAS  Google Scholar 

  42. Talpaz M, Silver RT, Druker BJ et al (2002) Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase II study. Blood 99:1928–1937

    Article  PubMed  CAS  Google Scholar 

  43. Sawyers CL, Hochhaus A, Feldman E et al (2002) Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 99:3530–3539

    Article  PubMed  CAS  Google Scholar 

  44. Kantarjian HM, O’Brien S, Cortes JE et al (2002) Imatinib mesylate therapy for relapse after allogeneic stem cell transplantation for chronic myelogenous leukemia. Blood 100:1590–1595

    PubMed  CAS  Google Scholar 

  45. O’Brien SG, Guilhot F, Larson RA (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348:994–1004

    Article  PubMed  CAS  Google Scholar 

  46. Kantarjian HM, O’Brien S, Cortes J et al (2003) Imatinib mesylate therapy improves survival in patients with newly diagnosed Philadelphia chromosome-positive chronic myelogenous leukemia in the chronic phase. Comparison with historic data. Cancer 98:2636–2642

    Article  PubMed  CAS  Google Scholar 

  47. Kantarjian HM, Cortes JE, O’Brien S et al (2003) Imatinib mesylate therapy in newly diagnosed patients with Philadelphia chromosome-positive chronic myelogenous leukemia: high incidence of early complete and major cytogenetic responses. Blood 101:97–100

    Article  PubMed  CAS  Google Scholar 

  48. Druker BJ, Guilhot F, O’Brien S, Larson RA (2006) Long-term benefits of imatinib (IM) for patients newly diagnosed with chronic myelogenous leukemia in chronic phase (CML-CP): the 5-year update from the IRIS study. Proc Am Soc Clin Oncol 24: Abstract 6506

  49. National Comprehensive Cancer Network (2006) Chronic myelogenous leukemia. http://www.nccn.org/professionals/physician_gls/default.asp

  50. Simonsson B, Kloke O, Stahel RA (2005) ESMO Minimum Clinical Recommendations for the diagnosis, treatment and follow-up of chronic myelogenous leukemia (CML). Ann Oncol 16(Suppl 1):i52–i53

    Article  PubMed  Google Scholar 

  51. Nardi V, Azam M, Daley GQ (2004) Mechanisms and implications of imatinib resistance mutations in BCR-ABL. Curr Opin Hematol 11:35–43

    Article  PubMed  CAS  Google Scholar 

  52. Schindler T, Bornmann W, Pellicena P et al (2000) Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science 289:1938–1942

    Article  PubMed  CAS  Google Scholar 

  53. Shah NP (2005) Loss of response to imatinib: mechanisms and management. Hematology Am Soc Hematol Educ Program:183–187

  54. Silver RT, Talpaz M, Sawyers CL et al (2004) Four years of follow-up of 1,027 patients with late chronic phase (L-CP), accelerated phase (AP), or blast crisis (BC) chronic myeloid leukemia (CML) treated with imatinib in three large phase II trials. Blood 104: Abstract 23

  55. Jabbour E, Cortes J, Kantarjian HM et al (2006) Allogenic stem cell transplantation for patients with chronic myeloid leukemia and acute lymphocytic leukemia after BCR-ABL kinase mutation-related imatinb failure. Blood 108:1421–1423

    Article  PubMed  CAS  Google Scholar 

  56. Hochhaus A, Hughes T (2004) Clinical resistance to imatinib: mechanisms and implications. Hematol Oncol Clin North Am 18:641–656

    Article  PubMed  Google Scholar 

  57. Litzow MR (2006) Imatinib resistance: obstacles and opportunities. Arch Pathol Lab Med 130:669–679

    PubMed  CAS  Google Scholar 

  58. Gorre ME, Mohammed M, Ellwood K et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880

    Article  PubMed  CAS  Google Scholar 

  59. Martinelli G, Soverini S, Rosti G, Cilloni D, Baccarani M (2005) New tyrosine kinase inhibitors in chronic myeloid leukemia. Haematologica 90:534–541

    PubMed  CAS  Google Scholar 

  60. Hochhaus A, Kreil S, Corbin AS et al (2002) Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16:2190–2196

    Article  PubMed  CAS  Google Scholar 

  61. Shah NP, Nicoll JM, Nagar B et al (2002) Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2:117–125

    Article  PubMed  CAS  Google Scholar 

  62. Soverini S, Martinelli G, Rosti G et al (2004) ABL Mutations in late-chronic phase chronic myeloid leukemia patients with cytogenetic refractoriness to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival. Blood 104: Abstract 1005

  63. Chu S, Snyder DS, Sawyers C et al (2003) Detection of BCR/ABL kinase domain mutations in chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib treatment. Blood 102: Abstract 237

  64. Branford S, Rudzki Z, Walsh S et al (2002) High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 99:3472–3475

    Article  PubMed  CAS  Google Scholar 

  65. Kreil S, Mueller MC, Hanfstein B et al (2003) Management and clinical outcome of CML patients after imatinib resistance associated with ABL kinase domain mutations. Blood 102: Abstract 238

  66. von Bubnoff N, Schneller F, Peschel C, Duyster J (2002) BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 359:487–491

    Article  Google Scholar 

  67. Barthe C, Cony-Makhoul P, Melo JV, Mahon JR (2001) Roots of clinical resistance to STI-571 cancer therapy. Science 293:2163

    Article  PubMed  CAS  Google Scholar 

  68. Hochhaus A, Kreil S, Corbin A et al (2001) Roots of clinical resistance to STI-571 cancer therapy. Science 293:2163

    Article  PubMed  CAS  Google Scholar 

  69. Al-Ali HK, Heinrich MC, Lange T et al (2004) High incidence of BCR-ABL kinase domain mutations and absence of mutations of the PDGFR and KIT activation loops in CML patients with secondary resistance to imatinib. Hematol J 5:55–60

    Article  PubMed  CAS  Google Scholar 

  70. Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N et al (2002) Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100:1014–1018

    Article  PubMed  CAS  Google Scholar 

  71. Corbin AS, Buchdunger E, Pascal F, Druker BJ (2002) Analysis of the structural basis of specificity of inhibition of the Abl kinase by STI571. J Biol Chem 277:32214–32219

    Article  PubMed  CAS  Google Scholar 

  72. Azam M, Latek RR, Daley GQ (2003) Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 112:831–843

    Article  PubMed  CAS  Google Scholar 

  73. Kantarjian H, Talpaz M, O’Brien S et al (2004) High-dose imatinib mesylate therapy in newly diagnosed Philadelphia chromosome-positive chronic phase chronic myeloid leukemia. Blood 103:2873–2878

    Article  PubMed  CAS  Google Scholar 

  74. Cortes J, Giles F, O’Brien S et al (2003) Result of high-dose imatinib mesylate in patients with Philadelphia chromosome-positive chronic myeloid leukemia after failure of interferon-α. Blood 102:83–86

    Article  PubMed  CAS  Google Scholar 

  75. Aoki E, Kantarjian H, O’Brien S et al (2006) High-dose imatinib mesylate treatment in patients (pts) with untreated early chronic phase (CP) chronic myeloid leukemia (CML): 2.5-year follow-up. Proc Am Soc Clin Oncol 24: Abstract 6535

  76. Tokarski JS, Newitt JA, Chang CY et al (2006) The structure of dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res 66:5790–5797

    Article  PubMed  CAS  Google Scholar 

  77. Shah NP, Tran C, Lee FY et al (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305:399–401

    Article  PubMed  CAS  Google Scholar 

  78. O’Hare T, Walters DK, Stoffregen EP et al (2005) In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 65:4500–4505

    Article  PubMed  CAS  Google Scholar 

  79. Talpaz M, Shah NP, Kantarjian H et al (2006) Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 354:2531–2541

    Article  PubMed  CAS  Google Scholar 

  80. Hochhaus A, Kantarjian H, Baccarani F et al (2006) Dasatinib in patients with chronic phase chronic myeloid leukemia (CP-CML) who are resistant or intolerant to imatinib: results of the CA180013 “START-C” Study. Proc Am Soc Clin Oncol 24: Abstract 6508

  81. Talpaz M, Apperley JF, Kim DW et al (2006) Dasatinib (D) in patients with accelerated phase chronic myeloid leukemia (AP-CML) who are resistant or intolerant to imatinib: results of the CA180005 ‘START-A’ study. Proc Am Soc Clin Oncol 24: Abstract 6526

  82. Coutre S, Martinelli G, Dombret H et al (2006) Dasatanib (D) in patients (pts) with chronic myelogenous leukemia (CML) in lymphoid blast crisis (LB-CML) or Philadelphia-chromosome positive acute lymphoblastic leukemia (Ph+ALL) who are imatinib (IM)-resistant (IM-R) or intolerant (IM-I): the CA180015 “START-L” study. Proc Am Soc Clin Oncol 24: Abstract 6528

  83. Cortes JE, Kim DW, Rosti G et al (2006) Dasatinib (D) in patients (pts) with chronic myelogenous leukemia (CML) in myeloid blast crisis (MBC) who are imatinib-resistant (IM-R) or IM-intolerant (IM-I): results of the CA180006 “START-B” study. Proc Am Soc Clin Oncol 24: Abstract 6529

  84. Shah NP, Rousselot P, Pasquini R et al (2006) Dasatinib (D) vs high dose imatinib (IM) in patients with chronic phase chronic myeloid leukemia (CP-CML) resistant to imatinib. Results of CA180017 START-R randomized trial. Proc Am Soc Clin Oncol 24: Abstract 6507

  85. Dressman MA, Malinowski R, McLean LA et al (2004) Correlation of major cytogenetic response with a pharmacogenetic marker in chronic myeloid leukemia patients treated with imatinib (STI571). Clin Cancer Res 10:2265–2271

    Article  PubMed  CAS  Google Scholar 

  86. Genzyme Press release, February 9, 2006

  87. Weisberg E, Manley PW, Breitenstein W et al (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7:129–141

    Article  PubMed  CAS  Google Scholar 

  88. Jensen MR, Brûggen J, DiLea C et al (2006) AMN107: efficacy of the selective Bcr-Abl tyrosine kinase inhibitor in a murine model of chronic myelogenous leukemia. Proc Am Assoc Cancer Res 47: Abstract 261

  89. Weisberg E, Manley P, Mestan J et al (2006) AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer 94:1765–1769

    Article  PubMed  CAS  Google Scholar 

  90. Kantarjian H, Giles F, Wunderle L et al (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354:2542–2551

    Article  PubMed  Google Scholar 

  91. Kantarjian HM, Gattermann N, O’Brien SG et al (2006) A phase II study of AMN107, a novel inhibitor of Bcr-Abl, administered to imatinib resistant and intolerant patients (pts) with chronic myelogenous leukemia (CML) in chronic phase (CP). Proc Am Soc Clin Oncol 24: Abstract 6534

  92. Le Coutre PD, Ottmann O, Gatterman N et al (2006) A phase II study of AMN107, a novel inhibitor of Bcr-Abl, administered to imatinib-resistant or intolerant patients (pts) with chronic myelogenous leukemia (CML) in accelerated phase (AP). Proc Am Soc Clin Oncol 24: Abstract 6531

  93. Giles FJ, Larson R, Le Coutre P et al (2006) A phase II study of AMN107, a novel inhibitor of Bcr-Abl, administered to imatinib-resistant or intolerant patients (pts) with Ph+ chronic myelogenous leukemia (CML) in blast crisis (BC) or relapsed/refractory Ph+ acute lymphoblastic leukemia. Proc Am Soc Clin Oncol 24: Abstract 6536

  94. Golas JM, Arndt K, Etienne C et al (2003) SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res 63:375–381

    PubMed  CAS  Google Scholar 

  95. Kimura S, Naito H, Segawa H et al (2005) NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia. Blood 106:3948–3954

    Article  PubMed  CAS  Google Scholar 

  96. O’Hare T, Pollock R, Stoffregen EP et al (2004) Inhibition of wild-type and mutant Bcr-Abl by AP23464, a potent ATP-based oncogenic protein kinase inhibitor: implications for CML. Blood 104:2532–2539

    Article  PubMed  CAS  Google Scholar 

  97. Eastell R, Hannon RA, Gallagher N et al (2005) The effect of AZD0530, a highly selective, orally available Src/Abl kinase inhibitor, on biomarkers of bone resorption in healthy males. Proc Am Soc Clin Oncol 23: Abstract 3041

  98. Wolff NC, Veach DR, Tong WP et al (2005) PD166326, a novel tyrosine kinase inhibitor, has greater antileukemic activity than imatinib mesylate in a murine model of chronic myeloid leukemia. Blood 105:3995–4003

    Article  PubMed  CAS  Google Scholar 

  99. Gumireddy K, Baker SJ, Cosenza SC et al (2005) A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance. Proc Natl Acad Sci USA 102:1992–1997

    Article  PubMed  CAS  Google Scholar 

  100. Hu Y, Liu Y, Pelletier S et al (2004) Requirement of Src kinases Lyn, Hck and Fgr for Bcr-Abl1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 36:453–461

    Article  PubMed  CAS  Google Scholar 

  101. Donato NJ, Wu JY, Stapley J et al (2003) Bcr-Abl independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101:690–698

    Article  PubMed  CAS  Google Scholar 

  102. Ptasznik A, Nakata Y, Kalota A, Emerson SG, Gewirtz AM (2004) Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells. Nat Med 10:1187–1189

    Article  PubMed  CAS  Google Scholar 

  103. Karp JE, Lancet JE, Kaufmann SH et al (2001) Clinical biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical-laboratory correlative trial. Blood 97:3361–3369

    Article  PubMed  CAS  Google Scholar 

  104. Cortes J, Kantarjian H (2005) New targeted approaches in chronic myeloid leukemia. J Clin Oncol 23:6316–6324

    Article  PubMed  CAS  Google Scholar 

  105. Baccarani M, Martinelli G, Rosti G et al (2004) Imatinib and pegylated human recombinant interferon-α2b in early chronic-phase chronic myeloid leukemia. Blood 104:4245–4251

    Article  PubMed  CAS  Google Scholar 

  106. Elrick LJ, Jorgensen HG, Mountford JC, Holyoake TL (2005) Punish the parent not the progeny. Blood 105:1862–1866

    Article  PubMed  CAS  Google Scholar 

  107. Nakajima A, Tauchi T, Sumi M, Bishop WR, Ohyashiki K (2003) Efficacy of SCH66336, a farnesyl transferase inhibitor, in conjunction with imatinib against Bcr-Abl-positive cells. Mol Cancer Ther 2:219–224

    PubMed  CAS  Google Scholar 

  108. Hoover RR, Mahon FX, Melo JV, Daley GQ (2002) Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood 100:1068–1071

    Article  PubMed  CAS  Google Scholar 

  109. Wang EJ, Johnson WW (2003) The farnesyl protein transferase inhibitor lonafarnib (SCH66336) is an inhibitor of multidrug resistance proteins 1 and 2. Chemotherapy 49:303–308

    Article  PubMed  CAS  Google Scholar 

  110. Burger H, van Tol H, Boersma AW et al (2004) Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 104:2940–2942

    Article  PubMed  CAS  Google Scholar 

  111. Thomas J, Wang L, Clark RE, Pirmohamed M (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104:3739–3745

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Drs. Kantarjian, Cortes, and Giles received research grants from Novartis and Bristol-Myers Squibb. Assistance with manuscript preparation was provided by Gardiner-Caldwell U.S. (funded by Bristol-Myers Squibb).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagop Kantarjian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabbour, E., Cortes, J., Giles, F. et al. The clinical challenge of imatinib resistance in chronic myeloid leukemia: emerging strategies with new targeted agents. Targ Oncol 1, 186–196 (2006). https://doi.org/10.1007/s11523-006-0032-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-006-0032-3

Keywords

Navigation