Skip to main content
Log in

Convection-enhanced delivery of liposomal doxorubicin in intracranial brain tumor xenografts

  • Original Research
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

We previously reported that convection-enhanced delivery (CED) of liposomes into brain tissue and intracranial brain tumor xenografts produced robust tissue distribution that can be detected by magnetic resonance imaging. Considering image-guided CED of therapeutic liposomes as a promising strategy for the treatment of brain tumors, we evaluated the efficacy of pegylated liposomal doxorubicin delivered by CED in an animal model. Distribution, toxicity, and efficacy of pegylated liposomal doxorubicin after CED were evaluated in a U251MG human glioblastoma intracranial xenograft model. CED of pegylated liposomal doxorubicin achieved good distribution in brain tumor tissue and surrounding normal brain tissue. Distribution was not affected by the particle concentration of pegylated liposomal doxorubicin, but tissue toxicity increased at higher concentrations. CED of pegylated liposomal doxorubicin, at a dose not toxic to normal rat brain (0.1 mg/ml doxorubicin), was significantly more efficacious than systemic administration of pegylated liposomal doxorubicin at the maximum tolerated dose. CED of pegylated liposomal doxorubicin resulted in improved survival compared to CED of free doxorubicin at the same dose. Outcomes of this study suggest that CED of liposomal drugs is a promising approach for the treatment of glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Groothuis DR (2000) The blood–brain and blood–tumor barriers: a review of strategies for increasing drug delivery. Neuro-oncol 2(1):45–59

    Article  PubMed  CAS  Google Scholar 

  2. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A 91(6):2076–2080

    Article  PubMed  CAS  Google Scholar 

  3. Bruce JN, Falavigna A, Johnson JP et al (2000) Intracerebral clysis in a rat glioma model. Neurosurgery 46(3):683–691

    Article  PubMed  CAS  Google Scholar 

  4. Kaiser MG, Parsa AT, Fine RL, Hall JS, Chakrabarti I, Bruce JN (2000) Tissue distribution and antitumor activity of topotecan delivered by intracerebral clysis in a rat glioma model. Neurosurgery 47(6):1391–1398

    Article  PubMed  CAS  Google Scholar 

  5. Degen JW, Walbridge S, Vortmeyer AO, Oldfield EH, Lonser RR (2003) Safety and efficacy of convection-enhanced delivery of gemcitabine or carboplatin in a malignant glioma model in rats. J Neurosurg 99(5):893–898

    PubMed  CAS  Google Scholar 

  6. Lidar Z, Mardor Y, Jonas T et al (2004) Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg 100(3):472–479

    Article  PubMed  CAS  Google Scholar 

  7. Allen TM, Martin FJ (2004) Advantages of liposomal delivery systems for anthracyclines. Semin Oncol 31(6 Suppl 13):5–15

    Article  PubMed  CAS  Google Scholar 

  8. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51(4):691–743

    PubMed  CAS  Google Scholar 

  9. Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet 42(5):419–436

    Article  PubMed  CAS  Google Scholar 

  10. Thigpen JT, Aghajanian CA, Alberts DS et al (2005) Role of pegylated liposomal doxorubicin in ovarian cancer. Gynecol Oncol 96(1):10–18

    Article  PubMed  CAS  Google Scholar 

  11. Zucchetti M, Boiardi A, Silvani A, Parisi I, Piccolrovazzi S, D’Incalci M (1999) Distribution of daunorubicin and daunorubicinol in human glioma tumors after administration of liposomal daunorubicin. Cancer Chemother Pharmacol 44(2):173–176

    Article  PubMed  CAS  Google Scholar 

  12. Gelmon KA, Tolcher A, Diab AR et al (1999) Phase I study of liposomal vincristine. J Clin Oncol 17(2):697–705

    PubMed  CAS  Google Scholar 

  13. Seiden MV, Muggia F, Astrow A et al (2004) A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan-resistant ovarian cancer. Gynecol Oncol 93(1):229–232

    Article  PubMed  CAS  Google Scholar 

  14. Zamboni WC, Ramalingam S, Friedland DM et al (2005) Phase I and Pharmacokinetic (PK) study of STEALTH liposomal CKD-602 (S-CKD602) in patients with advanced solid tumors. J Clin Oncol 23:2069 (Meeting abstracts)

    Google Scholar 

  15. Mamot C, Nguyen JB, Pourdehnad M et al (2004) Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J Neurooncol 68(1):1–9

    Article  PubMed  Google Scholar 

  16. Saito R, Bringas JR, McKnight TR et al (2004) Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res 64(7):2572–2579

    Article  PubMed  CAS  Google Scholar 

  17. Noble CO, Krauze MT, Drummond DC et al (2006) Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy. Cancer Res 66 (5):2801–2806

    Article  PubMed  CAS  Google Scholar 

  18. Bankiewicz KS, Eberling JL, Kohutnicka M et al (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164(1):2–14

    Article  PubMed  CAS  Google Scholar 

  19. Hamilton JF, Morrison PF, Chen MY et al (2001) Heparin co-infusion during convection-enhanced delivery (CED) increases the distribution of the glial-derived neurotrophic factor (GDNF) ligand family in rat striatum and enhances the pharmacological activity of neurturin. Exp Neurol 168(1):155–161

    Article  PubMed  CAS  Google Scholar 

  20. Sharma US, Sharma A, Chau RI, Straubinger RM (1997) Liposome-mediated therapy of intracranial brain tumors in a rat model. Pharm Res 14(8):992–998

    Article  PubMed  CAS  Google Scholar 

  21. Zhou R, Mazurchuk R, Straubinger RM (2002) Antivasculature effects of doxorubicin-containing liposomes in an intracranial rat brain tumor model. Cancer Res 62(9):2561–2566

    PubMed  CAS  Google Scholar 

  22. Fabel K, Dietrich J, Hau P et al (2001) Long-term stabilization in patients with malignant glioma after treatment with liposomal doxorubicin. Cancer 92(7):1936–1942

    Article  PubMed  CAS  Google Scholar 

  23. Hau P, Fabel K, Baumgart U et al (2004) Pegylated liposomal doxorubicin efficacy in patients with recurrent high-grade glioma. Cancer 100(6):1199–1207

    Article  PubMed  CAS  Google Scholar 

  24. Kouk\ourakis MI, Koukouraki S, Fezoulidis I et al (2000) High intratumoural accumulation of stealth liposomal doxorubicin (Caelyx) in glioblastomas and in metastatic brain tumours. Br J Cancer 83(10):1281–1286

    Article  PubMed  CAS  Google Scholar 

  25. Barker FG 2nd, Chang SM, Gutin PH et al (1998) Survival and functional status after resection of recurrent glioblastoma multiforme. Neurosurgery 42(4):709–720 (Discussion 20–23)

    Article  PubMed  Google Scholar 

  26. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2(1):48–58

    Article  PubMed  CAS  Google Scholar 

  27. Desoize B, Gimonet D, Jardiller JC (1998) Cell culture as spheroids: an approach to multicellular resistance. Anticancer Res 18(6A):4147–4158

    PubMed  CAS  Google Scholar 

  28. Kolchinsky A, Roninson IB (1997) Drug resistance conferred by MDR1 expression in spheroids formed by glioblastoma cell lines. Anticancer Res 17(5A):3321–3327

    PubMed  CAS  Google Scholar 

  29. Saito R, Krauze MT, Bringas JR et al (2005) Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp Neurol 196(2):381–389

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks John Forsayeth Ph.D. for proofreading and editing this work. Grant support: National Cancer Institute Specialized Program of Research Excellence grant (to M. S. Berger, K. S. Bankiewicz, and J. W. Park) and Accelerate Brain Cancer Cure (to K. S. Bankiewicz).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystof S. Bankiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, Y., Saito, R., Krauze, M.T. et al. Convection-enhanced delivery of liposomal doxorubicin in intracranial brain tumor xenografts. Targ Oncol 1, 79–85 (2006). https://doi.org/10.1007/s11523-006-0011-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-006-0011-8

Keywords

Navigation