Skip to main content

Advertisement

Log in

Implantable electrical stimulation bioreactor with liquid crystal polymer-based electrodes for enhanced bone regeneration at mandibular large defects in rabbit

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The osseous regeneration of large bone defects is still a major clinical challenge in maxillofacial and orthopedic surgery. Previous studies demonstrated that biphasic electrical stimulation (ES) stimulates bone formation; however, polyimide electrode should be removed after regeneration. This study presents an implantable electrical stimulation bioreactor with electrodes based on liquid crystal polymer (LCP), which can be permanently implanted due to excellent biocompatibility to bone tissue. The bioreactor was implanted into a critical-sized bone defect and subjected to ES for one week, where bone regeneration was evaluated four weeks after surgery using micro-CT. The effect of ES via the bioreactor was compared with a sham control group and a positive control group that received recombinant human bone morphogenetic protein (rhBMP)-2 (20 μg). New bone volume per tissue volume (BV/TV) in the ES and rhBMP-2 groups increased to 132% (p < 0.05) and 174% (p < 0.01), respectively, compared to that in the sham control group. In the histological evaluation, there was no inflammation within the bone defects and adjacent to LCP in all the groups. This study showed that the ES bioreactor with LCP electrodes could enhance bone regeneration at large bone defects, where LCP can act as a mechanically resistant outer box without inflammation.

To enhance bone regeneration, a bioreactor comprising collagen sponge and liquid crystal polymer-based electrode was implanted in the bone defect. Within the defect, electrical current pulses having biphasic waveform were applied from the implanted bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adamopoulos IE (2018) Inflammation in bone physiology and pathology. Curr Opin Rheumatol 30:59–64

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ankrum J, Karp JM (2010) Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol Med 16:203–209

    PubMed  PubMed Central  Google Scholar 

  3. Azi ML, Aprato A, Santi I, Kfuri M, Masse A, Joeris A (2016) Autologous bone graft in the treatment of post-traumatic bone defects: a systematic review and meta-analysis. BMC Musculoskelet Disord 17:465

    PubMed  PubMed Central  Google Scholar 

  4. Bae SH, Che J-H, Seo J-M, Jeong J, Kim ET, Lee SW, K-i K, Suaning GJ, Lovell NH, Kim SJ, Chung H (2012) In vitro biocompatibility of various polymer-based microelectrode arrays for retinal prosthesis. Invest Ophthalmol Vis Sci 53:2653–2657

    CAS  Google Scholar 

  5. Balint R, Cassidy NJ, Cartmell SH (2012) Electrical stimulation: a novel tool for tissue engineering. Tissue Eng Part B Rev 19:48–57

    PubMed  Google Scholar 

  6. Braun AP, Schulman H (1995) The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol 57:417–445

    CAS  PubMed  Google Scholar 

  7. Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR (2001) Signal transduction in electrically stimulated bone cells. J Bone Joint Surg Am 83:1514–1523

    CAS  PubMed  Google Scholar 

  8. Buch F, Albrektsson T, Herbst E (1984) Direct current influence on bone formation in titanium implants. Biomaterials 5:341–346

    CAS  PubMed  Google Scholar 

  9. Bueno EM, Glowacki J (2009) Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol 5:685–697

    PubMed  Google Scholar 

  10. Cai S, Bodle JC, Mathieu PS, Amos A, Hamouda M, Bernacki S, McCarty G, Loboa EG (2017) Primary cilia are sensors of electrical field stimulation to induce osteogenesis of human adipose-derived stem cells. FASEB J 31:346–355

    CAS  PubMed  Google Scholar 

  11. Cho TH, Kim IS, Lee B, Park S-N, Ko J-H, Hwang SJ (2017) Early and marked enhancement of new bone quality by alendronate-loaded collagen sponge combined with bone morphogenetic protein-2 at high dose: a long-term study in calvarial defects in a rat model. Tissue Eng Part A 23:1343–1360

    CAS  PubMed  Google Scholar 

  12. Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66

    PubMed  PubMed Central  Google Scholar 

  13. Diniz P, Shomura K, Soejima K, Ito G (2002) Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics 23:398–405

    PubMed  Google Scholar 

  14. Dworetzky SI, Fey EG, Penman S, Lian JB, Stein JL, Stein GS (1990) Progressive changes in the protein composition of the nuclear matrix during rat osteoblast differentiation. Proc Natl Acad Sci 87:4605–4609

    CAS  PubMed  Google Scholar 

  15. Ercan B, Webster TJ (2010) The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces. Biomaterials 31:3684–3693

    CAS  PubMed  Google Scholar 

  16. Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55:1613–1629

    CAS  PubMed  Google Scholar 

  17. Gerber H-P, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:623–628

    CAS  PubMed  Google Scholar 

  18. Glowacki J (1998) Angiogenesis in fracture repair. Clin Orthop Relat Res 355:S82–S89

    Google Scholar 

  19. Gubin AV, Borzunov DY, Malkova TA (2016) Ilizarov method for bone lengthening and defect management: review of contemporary literature. Bull NYU Hosp Jt Dis 74:145

    Google Scholar 

  20. Gwon TM, Min KS, Kim JH, Oh SH, Lee HS, Park M-H, Kim SJ (2015) Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion. Biomed Microdevices 17:1–12

    CAS  Google Scholar 

  21. Ha W-H, Seong H-S, Choi N-R, Park B-S, Kim Y-D (2017) Recombinant human bone morphogenic protein-2 induces the differentiation and mineralization of osteoblastic cells under hypoxic conditions via activation of protein kinase D and p38 mitogen-activated protein kinase signaling pathways. Tissue Eng Regen Med 14:433–441

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Han D, Dai K (2013) Prefabrication of a vascularized bone graft with beta tricalcium phosphate using an in vivo bioreactor. Artif Organs 37:884–893

    CAS  PubMed  Google Scholar 

  23. Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–2232

    CAS  PubMed  Google Scholar 

  24. Huang R-L, Kobayashi E, Liu K, Li Q (2016) Bone graft prefabrication following the in vivo bioreactor principle. EBioMedicine 12:43–54

    PubMed  PubMed Central  Google Scholar 

  25. Hwang SJ, Song YM, Cho TH, Kim RY, Lee TH, Kim SJ, Seo Y-K, Kim IS (2011) The implications of the response of human mesenchymal stromal cells in three-dimensional culture to electrical stimulation for tissue regeneration. Tissue Eng Part A 18:432–445

    PubMed  Google Scholar 

  26. Jafarian M, Eslaminejad MB, Khojasteh A, Mashhadi Abbas F, Dehghan MM, Hassanizadeh R, Houshmand B (2008) Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:e14–e24

    PubMed  Google Scholar 

  27. Jeong J, Bae SH, Min KS, Seo J-M, Chung H, Kim SJ (2015) A miniaturized, eye-conformable, and long-term reliable retinal prosthesis using monolithic fabrication of liquid crystal polymer (LCP). IEEE Trans Biomed Eng 62:982–989

    PubMed  Google Scholar 

  28. Jeong J, Bae SH, Seo J-M, Chung H, Kim SJ (2016) Long-term evaluation of a liquid crystal polymer (LCP)-based retinal prosthesis. J Neural Eng 13:025004

    PubMed  Google Scholar 

  29. Jeong J, Lee SW, Min K, Eom K, Bae SH, Kim SJ (2011) Eye-surface conformable telemetric structure for polymer-based retinal prosthesis. In: Conf Proc IEEE Eng Med Biol Soc. IEEE, pp 1097–1100

  30. Jeong J, Lee SW, Min KS, Kim SJ (2013) A novel multilayered planar coil based on biocompatible liquid crystal polymer for chronic implantation. Sensor Actuat A-Phys 197:38–46

    CAS  Google Scholar 

  31. Jeong J, Lee SW, Min KS, Shin S, Jun SB, Kim SJ (2012) Liquid crystal polymer (LCP), an attractive substrate for retinal implant. Sensor Mater 24:189–203

    CAS  Google Scholar 

  32. Kahl CR, Means AR (2003) Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 24:719–736

    CAS  PubMed  Google Scholar 

  33. Kettunen J, Mäkelä A, Miettinen H, Nevalainen T, Pohjonen T, Suokas E, Rokkanen P (2001) The fixation properties of carbon fiber-reinforced liquid crystalline polymer implant in bone: an experimental study in rabbits. J Biomed Mater Res 56:137–143

    CAS  PubMed  Google Scholar 

  34. Kettunen J, Mäkeläa E, Miettinen H, Nevalainen T, Heikkilä M, Pohjonen T, Törmälä P, Rokkanen P (1998) Mechanical properties and strength retention of carbon fibre-reinforced liquid crystalline polymer (LCP/CF) composite: an experimental study on rabbits. Biomaterials 19:1219–1228

    CAS  PubMed  Google Scholar 

  35. Kim IS, Cho TH, Lee ZH, Hwang SJ (2013) Bone regeneration by transplantation of human mesenchymal stromal cells in a rabbit mandibular distraction osteogenesis model. Tissue Eng Part A 19:66–78

    CAS  PubMed  Google Scholar 

  36. Kim IS, Lee EN, Cho TH, Song YM, Hwang SJ, Oh JH, Park EK, Koo TY, Seo Y-K (2010) Promising efficacy of Escherichia coli recombinant human bone morphogenetic protein-2 in collagen sponge for ectopic and orthotopic bone formation and comparison with mammalian cell recombinant human bone morphogenetic protein-2. Tissue Eng Part A 17:337–348

    PubMed  Google Scholar 

  37. Kim IS, Song JK, Song YM, Cho TH, Lee TH, Lim SS, Kim SJ, Hwang SJ (2009) Novel effect of biphasic electric current on in vitro osteogenesis and cytokine production in human mesenchymal stromal cells. Tissue Eng Part A 15:2411–2422

    CAS  PubMed  Google Scholar 

  38. Kim IS, Song JK, Zhang YL, Lee TH, Cho TH, Song YM, Kim DK, Kim SJ, Hwang SJ (2006) Biphasic electric current stimulates proliferation and induces VEGF production in osteoblasts. Biochim Biophys Acta Mol Cell Res 1763:907–916

    CAS  Google Scholar 

  39. Kim IS, Song YM, Cho TH, Pan H, Lee TH, Kim SJ, Hwang SJ (2011) Biphasic electrical targeting plays a significant role in Schwann cell activation. Tissue Eng Part A 17:1327–1340

    CAS  PubMed  Google Scholar 

  40. Kim IS, Song YM, Cho TH, Park YD, Lee KB, Noh I, Weber F, Hwang SJ (2008) In vitro response of primary human bone marrow stromal cells to recombinant human bone morphogenic protein-2 in the early and late stages of osteoblast differentiation. Develop Growth Differ 50:553–564

    CAS  Google Scholar 

  41. Kim J, Yang HJ, Cho TH, Lee SE, Park YD, Kim HM, Kim IS, Y-k S, Hwang SJ, Kim SJ (2013) Enhanced regeneration of rabbit mandibular defects through a combined treatment of electrical stimulation and rhBMP-2 application. Med Biol Eng Comput 51:1339–1348

    PubMed  Google Scholar 

  42. Kim JH, Lee TH, Song YM, Kim IS, Cho TH, Hwang SJ, Kim SJ (2011) An implantable electrical bioreactor for enhancement of cell viability. In: Conf Proc IEEE Eng Med Biol Soc. IEEE, pp 3601–3604

  43. Kim RY, Oh JH, Lee BS, Seo Y-K, Hwang SJ, Kim IS (2014) The effect of dose on rhBMP-2 signaling, delivered via collagen sponge, on osteoclast activation and in vivo bone resorption. Biomaterials 35:1869–1881

    CAS  PubMed  Google Scholar 

  44. Kim RY, Seong Y, Cho TH, Lee B, Kim IS, Hwang SJ (2018) Local administration of nuclear factor of activated T cells (NFAT) c1 inhibitor to suppress early resorption and inflammation induced by bone morphogenetic protein-2. J Biomed Mater Res A 106:1299–1310

    CAS  PubMed  Google Scholar 

  45. Kim SA, Das S, Lee H, Kim J, Song YM, Kim IS, Byun KM, Hwang SJ, Kim SJ (2011) Preliminary approach of real-time monitoring in vitro matrix mineralization based on surface plasmon resonance detection. Biotechnol Bioeng 108:1473–1478

    CAS  PubMed  Google Scholar 

  46. Kim SK, Cho TH, Han JJ, Kim IS, Park Y, Hwang SJ (2016) Comparative study of BMP-2 alone and combined with VEGF carried by hydrogel for maxillary alveolar bone regeneration. Tissue Eng Regen Med 13:171–181

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lavine L, Lustrin I, Shamos M, Moss M (1971) The influence of electric current on bone regeneration in vivo. Acta Orthop Scand 42:305–314

    CAS  PubMed  Google Scholar 

  48. Lee SW, Fallegger F, Casse BDF, Fried SI (2016) Implantable microcoils for intracortical magnetic stimulation. Sci Adv 2:e1600889

    PubMed  PubMed Central  Google Scholar 

  49. Lee SW, Seo J-M, Ha S, Kim ET, Chung H, Kim SJ (2009) Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Invest Ophthalmol Vis Sci 50:5859–5866

    PubMed  Google Scholar 

  50. Lee TH, Pan H, Kim IS, Kim JK, Cho TH, Oh JH, Yoon YB, Lee JH, Hwang SJ, Kim SJ (2010) Functional regeneration of a severed peripheral nerve with a 7-mm gap in rats through the use of an implantable electrical stimulator and a conduit electrode with collagen coating. Neuromodulation 13:299–305

    PubMed  Google Scholar 

  51. Leppik L, Zhihua H, Mobini S, Parameswaran VT, Eischen-Loges M, Slavici A, Helbing J, Pindur L, Oliveira KM, Bhavsar MB, Hudak L, Henrich D, Barker JH (2018) Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Sci Rep 8:6307

    PubMed  PubMed Central  Google Scholar 

  52. Levy DD, Rubin B (1972) Inducing bone growth in vivo by pulse stimulation. Clin Orthop Relat Res 88:218–222

    CAS  PubMed  Google Scholar 

  53. Lim J, Razi ZRM, Law JX, Nawi AM, Idrus RBH, Chin TG, Mustangin M, Ng MH (2018) Mesenchymal stromal cells from the maternal segment of human umbilical cord is ideal for bone regeneration in allogenic setting. Tissue Eng Regen Med 15:75–87

    CAS  PubMed  Google Scholar 

  54. Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D, Bouillon R, Carmeliet G (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF 164 and VEGF 188. Mech Dev 111:61–73

    CAS  PubMed  Google Scholar 

  55. Mercado-Pagán ÁE, Stahl AM, Shanjani Y, Yang Y (2015) Vascularization in bone tissue engineering constructs. Ann Biomed Eng 43:718–729

    PubMed  PubMed Central  Google Scholar 

  56. Mesfin A, Buchowski JM, Zebala LP, Bakhsh WR, Aronson AB, Fogelson JL, Hershman S, Kim HJ, Ahmad A, Bridwell KH (2013) High-dose rhBMP-2 for adults: major and minor complications: a study of 502 spine cases. J Bone Joint Surg Am 95:1546–1553

    PubMed  Google Scholar 

  57. Min KS, Oh SH, Park M-H, Jeong J, Kim SJ (2014) A polymer-based multichannel cochlear electrode array. Otol Neurotol 35:1179–1186

    PubMed  Google Scholar 

  58. Napoli C, Paolisso G, Casamassimi A, Al-Omran M, Barbieri M, Sommese L, Infante T, Ignarro LJ (2013) Effects of nitric oxide on cell proliferation: novel insights. J Am Coll Cardiol 62:89–95

    CAS  PubMed  Google Scholar 

  59. Oliveira SM, Ringshia RA, Legeros RZ, Clark E, Yost MJ, Terracio L, Teixeira CC (2010) An improved collagen scaffold for skeletal regeneration. J Biomed Mater Res A 94A:371–379

    CAS  Google Scholar 

  60. Park JH, Jeong J, Moon H, Kim C, Kim SJ (2016) Feasibility of LCP as an encapsulating material for photodiode-based retinal implants. IEEE Photon Technol Lett 28:1018–1021

    Google Scholar 

  61. Pinto MCX, Kihara AH, Goulart VA, Tonelli FM, Gomes KN, Ulrich H, Resende RR (2015) Calcium signaling and cell proliferation. Cell Signal 27:2139–2149

    CAS  PubMed  Google Scholar 

  62. Rattay F (1989) Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng 36:676–682

    CAS  PubMed  Google Scholar 

  63. Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8:393–405

    CAS  PubMed  Google Scholar 

  64. Seo J, Wee JH, Park JH, Park P, Kim J-W, Kim SJ (2016) Nerve cuff electrode using embedded magnets and its application to hypoglossal nerve stimulation. J Neural Eng 13:066014

    PubMed  Google Scholar 

  65. Shields LBE, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB (2006) Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 31:542–547

    PubMed  Google Scholar 

  66. Shin S, Kim J-H, Jeong J, Gwon TM, Lee S-H, Kim SJ (2017) Novel four-sided neural probe fabricated by a thermal lamination process of polymer films. J Neurosci Methods 278:25–35

    CAS  PubMed  Google Scholar 

  67. Song W-Y, Liu G-M, Li J, Luo Y-G (2016) Bone morphogenetic protein-2 sustained delivery by hydrogels with microspheres repairs rabbit mandibular defects. Tissue Eng Regen Med 13:750–761

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Street J, Bao M, Bunting S, Peale FV, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci 99:9656–9661

    CAS  PubMed  Google Scholar 

  69. Stuehr DJ, Haque MM (2019) Nitric oxide synthase enzymology in the 20 years after the Nobel Prize. Br J Pharmacol 176:177–188

    CAS  PubMed  Google Scholar 

  70. Tatsuyama K, Maezawa Y, Baba H, Imamura Y, Fukuda M (2000) Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. Eur J Histochem 44:269

    CAS  PubMed  Google Scholar 

  71. Urist MR, Strates BS (1971) Bone morphogenetic protein. J Dent Res 50:1392–1406

    CAS  PubMed  Google Scholar 

  72. Wheeler DG, Barrett CF, Groth RD, Safa P, Tsien RW (2008) CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation–transcription coupling. J Cell Biol 183:849–863

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wiltfang J, Rohnen M, Egberts J-H, Lützen U, Wieker H, Açil Y, Naujokat H (2016) Man as a living bioreactor: prefabrication of a custom vascularized bone graft in the gastrocolic omentum. Tissue Eng Part C Methods 22:740–746

    CAS  PubMed  Google Scholar 

  74. Winslow MM, Pan M, Starbuck M, Gallo EM, Deng L, Karsenty G, Crabtree GR (2006) Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell 10:771–782

    CAS  PubMed  Google Scholar 

  75. Yoon Y, Khan IU, Choi KU, Jung T, Jo K, Lee S-H, Kim WH, Kim D-Y, Kweon O-K (2018) Different bone healing effects of undifferentiated and osteogenic differentiated mesenchymal stromal cell sheets in canine radial fracture model. Tissue Eng Regen Med 15:115–124

    CAS  PubMed  Google Scholar 

  76. Yun S, Koh CS, Jeong J, Seo J, Ahn S-H, Choi GJ, Shim S, Shin J, Jung HH, Chang JW, Kim SJ (2019) Remote-controlled fully implantable neural stimulator for freely moving small animal. Electronics 8:706

    Google Scholar 

  77. Zara JN, Siu RK, Zhang X, Shen J, Ngo R, Lee M, Li W, Chiang M, Chung J, Kwak J, Wu BM, Ting K, Soo C (2011) High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng Part A 17:1389–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zelzer E, McLean W, Ng Y-S, Fukai N, Reginato AM, Lovejoy S, D’Amore PA, Olsen BR (2002) Skeletal defects in VEGF120/120 mice reveal multiple roles for VEGF in skeletogenesis. Development 129:1893–1904

    CAS  PubMed  Google Scholar 

  79. Zhuang H, Wang W, Seldes RM, Tahernia AD, Fan H, Brighton CT (1997) Electrical stimulation induces the level of TGF-β1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochem Biophys Res Commun 237:225–229

    CAS  PubMed  Google Scholar 

Download references

Glossary of terms

ESElectrical stimulation; LCPLiquid crystal polymer; rhBMPRecombinant human bone morphogenetic protein; ACSAbsorbable collagen sponge; CTComputed tomography; ROIRegion of interest; BV/TVBone volume per tissue volume; Tb.ThTrabecular thickness; Tb.SpTrabecular separation; Tb.NTrabecular number; BMDBone mineral density; CaHACalcium hydroxyapatite; WDWhole defect; SBSuperior-buccal; IBInferior-buccal; CCentral; SLSuperior-lingual; ILInferior-lingual; MTMasson’s trichrome; hMSCHuman mesenchymal stromal cell; VEGFVascular endothelial growth factor; ILInterleukin; CAMKCalcium/calmodulin-dependent protein kinase; CnCalcineurin; NOSNitric oxide synthase; cAMPCyclic adenosine monophosphate; CREBcAMP response element-binding protein; CDKCyclin-dependent kinase; NFATNuclear factor of activated T cells; IGFInsulin-like growth factor; MAPKMitogen-activated protein kinase.

Funding

This work was supported in part by the Dentistry–Engineering Interdisciplinary Research Grant jointly funded by the School of Dentistry and College of Engineering, Seoul National University, and in part by a grant to the CABMC project funded by the Defense Acquisition Program Administration (UD170030ID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung June Kim.

Ethics declarations

Informed consent

Informed consent was obtained from all the individual participants included in the study.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of Committee on the Safety and Ethical Handling Regulation for Laboratory Experiments in the School of Dentistry at Seoul National University, Seoul, Korea.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Yang, H.J., Cho, T.H. et al. Implantable electrical stimulation bioreactor with liquid crystal polymer-based electrodes for enhanced bone regeneration at mandibular large defects in rabbit. Med Biol Eng Comput 58, 383–399 (2020). https://doi.org/10.1007/s11517-019-02046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02046-2

Keywords

Navigation