Skip to main content

Advertisement

Log in

Influence of implant number, length, and tilting degree on stress distribution in atrophic maxilla: a finite element study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This study aims to evaluate the stress values, created in peri-implant region as a consequence of loading on fixed hybrid dentures that was planned with different implant numbers, lengths, or tilting angulations. Thirteen three-dimensional (3D) finite element analysis models were generated with four, five, or seven implants (group A, B, and C). Except the distal implants, all implants were modeled at 4.1 mm (diameter) and 11.5 mm (length) in size. Distal implants were configured to be in five different lengths (6, 8, 11.5, 13, and 16 mm) and three different implant inclination degrees (0°, 30°, and 45°). A 150-N load was applied vertically on prosthesis. Released stresses were evaluated comparatively. The lowest von Mises stress values were found in group C, in the 11.5-mm implant model. Tilting the distal implants 30° caused higher stress values. In 45°-tilting implant models, lower stress values were recorded according to the 30°-tilting models. The ideal implant number is seven for an edentulous maxilla. Tilting the implants causes higher stress values. A 45° inclination of implant causes lower stress values according to the 30° models due to a shorter cantilever. The ideal implant length is 11.5 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chou HY, Muftu S, Bozkaya D (2010) Combined effects of implant insertion depth and alveolar bone quality on periimplant bone strain induced by a wide-diameter, short implant and a narrow-diameter, long implant. J Prosthet Dent 104(5):293–300

    Article  PubMed  Google Scholar 

  2. Chang SH, Lin CL, Hsue SS, Lin YS, Huang SR (2012) Biomechanical analysis of the effects of implant diameter and bone quality in short implants placed in the atrophic posterior maxilla. Med Eng Phys 34(2):153–160

    Article  PubMed  Google Scholar 

  3. Woo I, Le BT (2004) Maxillary sinus floor elevation: review of anatomy and two techniques. Implant Dent 13(1):28–32

    Article  PubMed  CAS  Google Scholar 

  4. Graziani F, Donos N, Needleman I, Gabriele M, Tonetti M (2004) Comparison of implant survival following sinus floor augmentation procedures with implants placed in pristine posterior maxillary bone: a systematic review. Clin Oral Implants Res 15(6):677–682

    Article  PubMed  Google Scholar 

  5. Li T, Yang X, Zhang D, Zhou H, Shao J, Ding Y, Kong L (2012) Analysis of the biomechanical feasibility of a wide implant in moderately atrophic maxillary sinus region with finite element method. Oral Surg Oral Med Oral Pathol Oral Radiol 114(2):1–8

    Article  Google Scholar 

  6. Almeida EO, Rocha EP, Freitas Junior AC, Anchieta RB, Poveda R, Gupta N, Coelho PG (2015) Tilted and short implants supporting fixed prosthesis in an atrophic maxilla: a 3D-FEA biomechanical evaluation. Clin Implant Dent Relat Res 17(1):332–342

    Article  Google Scholar 

  7. Saleh Saber F, Ghasemi S, Koodaryan R, Babaloo A, Abolfazli N (2015) The comparison of stress distribution with different implant numbers and inclination angles in all-on-four and conventional methods in maxilla: a finite element analysis. J Dent Res Dent Clin Dent Prospects 9(4):246–253

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hernandez-Alfaro F, Sancho-Puchades M, Guijarro-Martinez R (2013) Total reconstruction of the atrophic maxilla with intraoral bone grafts and biomaterials: a prospective clinical study with cone beam computed tomography validation. Int J Oral Maxillofac Implants 28(1):241–251

    Article  PubMed  Google Scholar 

  9. Chiapasco M, Casentini P, Zaniboni M (2009) Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants 24(7):237–259

    PubMed  Google Scholar 

  10. Zampelis A, Rangert B, Heijl L (2007) Tilting of splinted implants for improved prosthodontic support: a two-dimensional finite element analysis. J Prosthet Dent 97(6):35–43

    Article  Google Scholar 

  11. Regev E, Smith A, Perrott DH, Pogrel MA (1995) Maxillary sinus complications related to endosseous implants. Int J Oral Maxillofac Implants 10(4):451–461

    PubMed  CAS  Google Scholar 

  12. Malo P, Nobre M, Rangert B (2007) Short implants placed one-stage in maxillae and mandibles: a 2-year retrospective clinical study. Clin Implant Dent and Relat Res 9(1):15–21

    Article  Google Scholar 

  13. Das Neves FD, Fones D, Bernardes SR, Do Prado CJ, Neto AJ (2006) Short implants. An analysis of longitudinal studies. Int J Oral Maxillofac Implants 21(1):86–93

    PubMed  Google Scholar 

  14. Van Assche N, Michels S, Quirynen M, Naert I (2011) Extra short dental implants supporting an overdenture in the edentulous maxilla: a proof of concept. Clin Oral Implants Res 23(5):567–576

    Article  PubMed  Google Scholar 

  15. Romeo E, Bivio A, Mosca D, Scanferla M, Ghisolfi M, Storelli S (2010) The use of short dental implants in clinical practice: literature review. Minerva Stomatol 59(1–2):23–31

    PubMed  CAS  Google Scholar 

  16. Davarpanah M, Martinez H, Kebir M, Etienne D, Tecucianu JF (2001) Wide-diameter implants: new concepts. Int J Periodontics Restorative Dent 21(2):149–159

    PubMed  CAS  Google Scholar 

  17. Cavalli N, Barbaro B, Spasari D, Azzola F, Ciatti A, Francetti L (2012) Tilted implants for full-arch rehabilitations in completely edentulous maxilla: a retrospective study. Int J Dent 2012(2012):e180379

    Google Scholar 

  18. Rossetti PH, Bonachela WC, Rossetti LM (2010) Relevant anatomic and biomechanical studies for implant possibilities on the atrophic maxilla: critical appraisal and literature review. J Prosthodont 19(6):449–457

    Article  PubMed  Google Scholar 

  19. Drago CJ (1992) Rates of osseointegration of dental implants with regard to anatomical location. J Prosthodont 1(1):29–31

    Article  PubMed  CAS  Google Scholar 

  20. Viceconti M, Baleani M, De Lollis A, Toni A (1998) An FEA-based protocol for the pre-clinical validation of custom-made hip implants. J Med Eng Technol 22(6):257–262

    Article  PubMed  CAS  Google Scholar 

  21. Geng JP, Tan KB, Liu GR (2001) Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 85(6):585–598

    Article  PubMed  CAS  Google Scholar 

  22. Moriwaki H, Yamaguchi S, Nakano T, Yamanishi Y, Imazato S, Yatani H (2016) Influence of implant length and diameter, Bicortical anchorage, and sinus augmentation on bone stress distribution: three-dimensional finite element analysis. Int J Oral Maxillofac Implants 31(4):84–91

    Article  Google Scholar 

  23. YJ L, Chang SH, Ye JT, Ye YS, YS Y (2015) Finite element analysis of bone stress around micro-implants of different diameters and lengths with application of a single or composite torque force. PLoS One 10(12):e0144744

    Article  CAS  Google Scholar 

  24. Baggi L, Cappelloni I, Di Girolama M, Maceri F, Vairo G (2008) The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent 100(6):422–431

    Article  PubMed  Google Scholar 

  25. Assuncao WG, Barao VA, Tabata LF, Gomes EA, Delben JA, dos Santos PH (2009) Biomechanics studies in dentistry: bioengineering applied in oral implantology. J Craniofac Surg 20(4):1173–1177

    Article  PubMed  Google Scholar 

  26. Bourauel C, Aitlahrach M, Heinemann F, Hasan I (2012) Biomechanical finite element analysis of small diameter and short dental implants: extensive study of commercial implants. Biomed Tech (Berl) 57(1):21–32

    Article  Google Scholar 

  27. Silva GC, Mendonca JA, Lopes LR, Landre J (2010) Stress patterns on implants in prostheses supported by four or six implants: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants 25(2):239–246

    PubMed  Google Scholar 

  28. Gümrükçü Z, Korkmaz YT, Korkmaz FM (2017) Biomechanical evaluation of implant-supported prosthesis with various tilting implant angles and bone types in atrophic maxilla: a finite element study. Comput Biol Med 86(2017):47–54

    Article  PubMed  Google Scholar 

  29. Lekholm U, Zarb GA, Albrektsson T (1985) Patient selection and preparation. Tissue-integrated prostheses. Chicago Quintessence Int:199–209

  30. Correa S, Ivancik J, Isaza JF, Naranjo M (2012) Evaluation of the structural behavior of three and four implant-supported fixed prosthetic restorations by finite element analysis. J Prosthodont Res 56(2):110–119

    Article  PubMed  Google Scholar 

  31. Misch CE (2009) Dental implant prosthesis, 2nd edn. Nobel, İstanbul, pp 281–308

    Google Scholar 

  32. Kong L, Gu Z, Hu K, Zhou H, Liu Y, Liu B (2009) Optimization of the implant diameter and length in type B/2 bone for improved biomechanical properties: a three-dimensional finite element analysis. Adv Eng Softw 40(9):935–940

    Article  Google Scholar 

  33. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O (2005) Influence of marginal bone resorption on stress around an implant—a three-dimensional finite element analysis. J Oral Rehabil 32(4):279–286

    Article  PubMed  CAS  Google Scholar 

  34. Pirner S, Tingelhoff K, Wagner I, Westphal R, Rilk M, Wahl FM, Bootz F, Eichhorn KW (2009) CT-based manual segmentation and evaluation of paranasal sinuses. Eur Arch Otorhinolaryngol 266(4):507–518

    Article  PubMed  CAS  Google Scholar 

  35. Tepper G, Haas R, Zechner W, Krach W, Watzek G (2002) Three-dimensional finite element analysis of implant stability in the atrophic posterior maxilla: a mathematical study of the sinus floor augmentation. Clin Oral Implants Res 13(6):657–665

    Article  PubMed  Google Scholar 

  36. Rismanchian M, Bajoghli F, Mostajeran Z, Fazel A, Eshkevari P (2009) Effect of implants on maximum bite force in edentulous patients. J Oral Implantol 35(4):196–200

    Article  PubMed  Google Scholar 

  37. Ferrario VF, Sforza C, Serrao G, Dellavia C, Tartaglia GM (2004) Single tooth bite forces in healthy young adults. J Oral Rehabil 31(1):18–22

    Article  PubMed  CAS  Google Scholar 

  38. Petrie CS, Williams JL (2005) Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Implants Res 16(4):486–494

    Article  PubMed  Google Scholar 

  39. Bozkaya D, Muftu S, Muftu A (2004) Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent 92(6):523–530

    Article  PubMed  CAS  Google Scholar 

  40. Eraslan O, Sevimay M, Usumez A, Eslitascıoglu G (2005) Effects of cantilever design and material on stress distribution in fixed partial dentures—a finite element analysis. J Oral Rehabil 32(4):273–2788

    Article  PubMed  CAS  Google Scholar 

  41. Lin CL, Kuo YC, Lin TS (2005) Effects of dental implant length and bone quality on biomechanical responses in bone around implants: a 3-D non-linear finite element analysis. Biomed Eng Appl Basis Commun 17(1):44–49

    Article  Google Scholar 

  42. Van Staden RC, Guan H, Loo YC (2006) Application of the finite element method in dental implant research. Comput Methods Biomech Biomed Engin 9(4):257–270

    Article  PubMed  Google Scholar 

  43. Quirynen M, Naert I, van Steenberghe D (1992) Fixture design and overload influence marginal bone loss and fixture success in the Branemark system. Clin Oral Implants Res 3(3):104–111

    Article  PubMed  CAS  Google Scholar 

  44. Martinez H, Davarpanah M, Missika P, Calletti R, Lazzara R (2001) Optimal implant stabilization in low density bone. Clin Oral Implants Res 12(5):423–432

    Article  PubMed  CAS  Google Scholar 

  45. Koca OL, Eskitascioglu G, Usumez A (2005) Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J Prosthet Dent 93(1):38–44

    Article  PubMed  Google Scholar 

  46. Taylor TD, Agar JR, Vogiatzi T (2000) Implant prosthodontics: current perspective and future directions. Int J Oral Maxillofac Implants 15(1):66–75

    PubMed  CAS  Google Scholar 

  47. Iplikcioglu H, Akca K, Cehreli MC, Sahin S (2003) Comparison of non-linear finite element stress analysis with in vitro strain gauge measurements on a Morse taper implant. Int J Oral Maxillofac Implants 18(2):258–265

    PubMed  Google Scholar 

  48. Mansat P, Briot J, Mansat M, Swider P (2007) Evaluation of the glenoid implant survival using a biomechanical finite element analysis: influence of the implant design, bone properties, and loading location. J Shoulder Elb Surg 16(3):79–83

    Article  Google Scholar 

  49. Simsek B, Erkmen E, Yılmaz D, Eser A (2006) Effects of different inter-implant distances on the stress distribution around endosseous implants in posterior mandible: a 3D finite element analysis. Med Eng Phys 28(3):199–213

    Article  PubMed  Google Scholar 

  50. Mercian P, Borak L, Valasek J, Kaiser J, Florian Z, Wolff J (2014) Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone—a feasibility study. J Biomech 47(16):3830–3836

    Article  Google Scholar 

  51. Chun HJ, Park DN, Han CH, Heo SJ, Heo MS, Koak JY (2005) Stress distributions in maxillary bone surrounding overdenture implants with different overdenture attachments. J Oral Rehabil 32(3):193–205

    Article  PubMed  Google Scholar 

  52. Barao VA, Assuncao WG, Tabata LF, Delben JA, Gomes EA, De Sousa EA, Rocha EP (2009) Finite element analysis to compare complete denture and implant-retained overdentures with different attachment systems. J Craniofac Surg 20(4):1066–1067

    Article  PubMed  Google Scholar 

  53. Takahashi T, Shimamura I, Sakurai K (2010) Influence of number and inclination angle of implants on stress distribution in mandibular cortical bone with All-on-4 concept. J Prosthodont Res 54(4):179–184

    Article  PubMed  Google Scholar 

  54. El-Anwar MI, El-Zawahry MM (2011) A three dimensional finite element study on dental implant design. J Genet Eng Biotechnol 9(1):77–82

    Article  Google Scholar 

  55. Küçükkurt S, Alpaslan G, Kurt A (2017) Biomechanical comparison of sinus floor elevation and alternative treatment methods for dental implant placement. Comput Methods Biomech Biomed Eng 20(3):284–293

    Article  Google Scholar 

  56. Francetti L, Romeo D, Corbella S, Taschieri S, Del Fabbro M (2012) Bone level changes around axial and tilted implants in full-arch fixed immediate restorations. Interim results of a prospective study. Clin Implant Dent Relat Res 14(5):646–654

    Article  PubMed  Google Scholar 

  57. Cehreli MC, Iplikcioglu H, Bilir OG (2002) The influence of the location of load transfer on strains around implants supporting four unit cement-retained fixed prostheses: in vitro evaluation of axial versus off-set loading. J Oral Rehabil 29(4):394–400

    Article  PubMed  CAS  Google Scholar 

  58. De Vico G, Bonin M, Spinelli D, Schiavetti R, Sannino G, Pozzi A, Ottria L (2011) Rationale for tilted implants: FEA considerations and clinical reports. J Oral Implantol 4:23–33

    Google Scholar 

  59. Naini RB, Nokar S, Borghei H, Alikhasi M (2011) Tilted or parallel implant placement in the completely edentulous mandible? A three-dimensional finite element analysis. Int J Oral Maxillofac Implants 26(4):776–781

    PubMed  Google Scholar 

  60. Ogawa T, Dhaliwal S, Naert I, Mine A, Kronstrom M, Sasaki K, Duyck J (2010) Impact of implant number, distribution and prosthesis material on loading on implants supporting fixed prostheses. J Oral Rehabil 37(7):525–531

    Article  PubMed  CAS  Google Scholar 

  61. Pierrisnard L, Renouard F, Renault P, Barquins M (2003) Influence of implant length and bicortical anchorage on implant stress distribution. Clin Implant Dent Relat Res 5(4):254–262

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank to Mechanical Engineer Sinan Köse for his valuable contributions to this study.

Funding

This study was funded by the Scientific Research Project Fund of Karadeniz Technical University, Trabzon, Turkey (Grant number: 2014-11400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeynep Gümrükçü.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gümrükçü, Z., Korkmaz, Y.T. Influence of implant number, length, and tilting degree on stress distribution in atrophic maxilla: a finite element study. Med Biol Eng Comput 56, 979–989 (2018). https://doi.org/10.1007/s11517-017-1737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1737-4

Keywords

Navigation