Skip to main content
Log in

Towards a patient-specific hepatic arterial modeling for microspheres distribution optimization in SIRT protocol

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Selective internal radiation therapy (SIRT) using Yttrium-90 loaded glass microspheres injected in the hepatic artery is an emerging, minimally invasive therapy of liver cancer. A personalized intervention can lead to high concentration dose in the tumor, while sparing the surrounding parenchyma. We propose a computational model for patient-specific simulation of entire hepatic arterial tree, based on liver, tumors, and arteries segmentation on patient’s tomography. Segmentation of hepatic arteries down to a diameter of 0.5 mm is semi-automatically performed on 3D cone-beam CT angiography. The liver and tumors are extracted from CT-scan at portal phase by an active surface method. Once the images are registered through an automatic multimodal registration, extracted data are used to initialize a numerical model simulating liver vascular network. The model creates successive bifurcations from given principal vessels, observing Poiseuille’s and matter conservation laws. Simulations provide a coherent reconstruction of global hepatic arterial tree until vessel diameter of 0.05 mm. Microspheres distribution under simple hypotheses is also quantified, depending on injection site. The patient-specific character of this model may allow a personalized numerical approximation of microspheres final distribution, opening the way to clinical optimization of catheter placement for tumor targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Andreana L, Isgrȯ G, Marelli L, Davies N, Yu D, Navalkissoor S, Burroughs AK (2012) Treatment of hepatocellular carcinoma (HCC) by intra-arterial infusion of radio-emitter compounds: trans-arterial radio-embolisation of HCC. Cancer Treat Rev 38(6):641–9. https://doi.org/10.1016/j.ctrv.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  2. Andrews JC, Walker-Andrews SC, Juni JE, Warber S, Ensminger WD (1989) Modulation of liver tumor blood flow with hepatic arterial epinephrine: a spect study. Radiology 173(3):645–647

    Article  CAS  PubMed  Google Scholar 

  3. Behrens T, Rohr K, Stiehl HS (2003) Robust segmentation of tubular structures in 3-D medical images by parametric object detection and tracking. Syst Man. Cybern Part B Cybern IEEE Trans 33(4):554–561. https://doi.org/10.1109/TSMCB.2003.814305

    Article  CAS  Google Scholar 

  4. Childress EM, Kleinstreuer C (2014) Computationally Efficient Particle Release Map Determination for Direct Tumor-Targeting in a Representative Hepatic Artery System. J Biomech Eng 136(1):11,012–11,018. https://doi.org/10.1115/1.4025881

    Article  CAS  Google Scholar 

  5. Childress EM, Kleinstreuer C, Kennedy AS (2012) A New Catheter for Tumor-Targeting With Radioactive Microspheres in Representative Hepatic Artery Systems-Part II: Solid Tumor-Targeting in a Patient-Inspired Hepatic Artery System. J Biomech Eng 134(5):051,005. https://doi.org/10.1115/1.4006685

    Article  CAS  Google Scholar 

  6. Esneault S, Lafon C, Dillenseger JL (2010) Liver vessels segmentation using a hybrid geometrical moments/graph cuts method. IEEE Trans Biomed Eng 57(2):276–283

    Article  PubMed  Google Scholar 

  7. Ficher A (1963). The liver. Elsevier. https://doi.org/10.1016/B978-1-4832-2824-2.50013-3

  8. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  CAS  PubMed  Google Scholar 

  9. Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. Medial Image Comput Comput Assist Invervention 1496:130–137. https://doi.org/10.1016/j.media.2004.08.001

    Google Scholar 

  10. Garin E, Lenoir L, Edeline J, Laffont S, Mesbah H, Porée P, Sulpice L, Boudjema K, Mesbah M, Guillygomarc A, Quehen E, Pracht M, Raoul JL, Clement B, Rolland Y, Boucher E (2013) Boosted selective internai radiation therapy with 90Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: a new personalized promising concept. Eur J Nucl Med Mol Imaging 20(7):1057–1068

    Article  Google Scholar 

  11. GroupHealth (2013) Clinical Review Criteria. SIRT (Selective Internal Radiation Therapy) Therasphere and SIR Sphere for Unresectable Hepatocellular Carcinoma

  12. Jimenez-Carretero D, Santos A, Kerkstra S, Rudyanto RD, Ledesma-Carbayo MJ (2013) 3D Frangi-based lung vessel enhancement filter penalizing airways. In: 2013 IEEE 10th International Symposium Biomedicine of Imaging (ISBI). https://doi.org/10.1109/ISBI.2013.6556627, pp 926–929

  13. Jurczuk K, Kretowski M, Eliat PA, Saint-Jalmes H, Bézy-Wendling J (2014) In Silico Modeling of Magnetic Resonance Flow Imaging in Complex Vascular Networks. IEEE Trans Med Imaging 33(11):2191–2209. http://www.ncbi.nlm.nih.gov/pubmed/25020068

    Article  PubMed  Google Scholar 

  14. Kamiya A, Togawa T (1972) Optimal branching structure of the vascular tree. Bull Math Biophys 34 (4):431–438. https://doi.org/10.1007/BF02476705

    Article  CAS  PubMed  Google Scholar 

  15. Kretowski M, Rolland Y, Bézy-Wendling J, Coatrieux JL (2003) Physiologically based modeling of 3-D vascular networks and CT scan angiography. IEEE Trans Med Imaging 22(2):248–57. www.ncbi.nlm.nih.gov/pubmed/12716001

    Article  PubMed  Google Scholar 

  16. Ledzewicz U, Maurer H, Schättler H (2011) Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Math Biosci Eng 8(2):307–323

    Article  PubMed  Google Scholar 

  17. Martini F, Nath JL, Bartholomew EF (2012) Fundamentals of Anatomy and Physiology. Pearson

  18. Mescam M, Eliat PA, Fauvel C, de Certaines JD, Bėzy-Wendling J (2007) A physiologically based pharmacokinetic model of vascular-extravascular exchanges during liver carcinogenesis: application to MRI contrast agents. Contrast Media Mol Imaging 2(5):215–28. https://doi.org/10.1002/cmmi.147, http://www.ncbi.nlm.nih.gov/pubmed/17874424

    Article  CAS  PubMed  Google Scholar 

  19. Murthy R, Nunez R, Szklaruk J, Erwin W, Madoff DC, Gupta S, Ahrar K, Wallace MJ, Cohen A, Coldwell DM, Kennedy AS, Hicks ME (2005) Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics 25 (Suppl 1):S41–S55. https://doi.org/10.1148/rg.25si055515

    Article  PubMed  Google Scholar 

  20. Olufsen MS (1998) Modeling of the arterial system with reference to an anesthesia simulator. PhD thesis, Roskilde University

  21. Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22(8):986–1004. https://doi.org/10.1109/TMI.2003.815867

    Article  PubMed  Google Scholar 

  22. Raoul JL, Sangro B, Forner A, Mazzaferro V, Piscaglia F, Bolondi L, Lencioni R (2011) Evolving strategies for the management of intermediate-stage hepatocellular carcinoma: available evidence and expert opinion on the use of transarterial chemoembolization. Cancer Treat Rev 37(3):212–20. https://doi.org/10.1016/j.ctrv.2010.07.006

    Article  PubMed  Google Scholar 

  23. Reska D, Boldak C, Kretowski M (2012) Fast 3D segmentation of hepatic images combining region and boundary criteria. Image Process Commun 17(4):31–38

    Article  Google Scholar 

  24. Reska D, Jurczuk K, Boldak C, Kretowski M (2014) MESA: Complete approach for design and evaluation of segmentation methods using real and simulated tomographic images. Biocybern Biomed Eng 34(3):146–158

    Article  Google Scholar 

  25. Smistad E, Elster AC, Lindseth F (2014) GPU accelerated segmentation and centerline extraction of tubular structures from medical images. Int J Comput Assist Radiol Surg 9(4):561–75. https://doi.org/10.1007/s11548-013-0956-x

    Article  PubMed  Google Scholar 

  26. Styner M, Brechbuhler C, Székely G, Gerig G (2000) Parametric estimate of intensity inhomogeneities applied to MRI. IEEE Trans Med Imaging 19(3)

  27. Zamir M, Chee H (1986) Branching characteristics of human coronary arteries. Can J Physiol Pharmacol 64 (6):661–668. https://doi.org/10.1139/y86-109

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Etienne Garin for his contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costanza Simoncini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simoncini, C., Jurczuk, K., Reska, D. et al. Towards a patient-specific hepatic arterial modeling for microspheres distribution optimization in SIRT protocol. Med Biol Eng Comput 56, 515–529 (2018). https://doi.org/10.1007/s11517-017-1703-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1703-1

Keywords

Navigation