Skip to main content

Advertisement

Log in

Detection of cardiovascular risk from a photoplethysmographic signal using a matching pursuit algorithm

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Cardiovascular disease is the main cause of death in Europe, and early detection of increased cardiovascular risk (CR) is of clinical importance. Pulse wave analysis based on pulse oximetry has proven useful for the recognition of increased CR. The current study provides a detailed description of the pulse wave analysis technology and its clinical application. A novel matching pursuit-based feature extraction algorithm was applied for signal decomposition of the overnight photoplethysmographic pulse wave signals obtained by a single-pulse oximeter sensor. The algorithm computes nine parameters (pulse index, SpO2 index, pulse wave amplitude index, respiratory-related pulse oscillations, pulse propagation time, periodic and symmetric desaturations, time under 90 % SpO2, difference between pulse and SpO2 index, and arrhythmia). The technology was applied in 631 patients referred for a sleep study with suspected sleep apnea. The technical failure rate was 1.4 %. Anthropometric data like age and BMI correlated significantly with measures of vascular stiffness and pulse rate variability (PPT and age r = −0.54, p < 0.001, PR and age r = −0.36, p < 0.01). The composite biosignal risk score showed a dose–response relationship with the number of CR factors (p < 0.001) and was further elevated in patients with sleep apnea (AHI ≥ 15n/h; p < 0.001). The developed algorithm extracts meaningful parameters indicative of cardiorespiratory and autonomic nervous system function and dysfunction in patients suspected of SDB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AHI:

Apnea–Hypopnea Index

Arryth:

Irregular heart rate

BMI:

Body mass index

CV:

Cardiovascular

CPAP:

Continuous positive airway pressure

MAD:

Mean absolute deviation

MP:

Matching pursuit

OSA:

Obstructive sleep apnea

PASD:

Periodic and symmetric desaturations

PR:

Pulse rate

PWA:

Pulse wave amplitude

PPT:

Pulse propagation time

PR_SpO2_I:

Difference between pulse index and SpO2 index

RRPO:

Respiratory-related pulse oscillation

SDB:

Sleep-disordered breathing

SpO2 :

Oxygen saturation

TimeBelow90:

Time under 90 % SpO2

References

  1. Aittokallio J, Polo O, Hiissa J, Virkki A, Toikka J, Raitakari O, Saaresranta T, Aittokallio T (2008) Overnight variability in transcutaneous carbon dioxide predicts vascular impairment in women. Exp Physiol 93(7):880–891

    Article  CAS  PubMed  Google Scholar 

  2. Aittokallio J, Saaresranta T, Virkki A, Karppinen N, Heinonen OJ, Aittokallio T, Polo O (2009) Transcutaneous carbon dioxide profile during sleep reveals metabolic risk factors in postmenopausal females. Eur Respir J 34:1132–1139

    Article  CAS  PubMed  Google Scholar 

  3. Allen J (2007) Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 28:R1–R39

    Article  PubMed  Google Scholar 

  4. Bergeaud F, Mallat S (1995) Matching pursuit of images. In: Proceedings of the international conference on image processing, vol 1, pp 53–56

  5. Buchs A, Slovik Y, Rapoport M, Rosenfeld C, Khanokh B, Nitzan M (2005) Right–left correlation of the sympathetically induced fluctuations of photoplethysmographic signal in diabetic and non-diabetic subjects. Med Biol Eng Comput 43(2):252–257

    Article  CAS  PubMed  Google Scholar 

  6. Conroy RM et al (2003) Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 24:987–1003

    Article  CAS  PubMed  Google Scholar 

  7. Danesh J et al (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350:1387–1397

    Article  CAS  PubMed  Google Scholar 

  8. Don DS et al (1999) Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure. Am J Respir Crit Care Med 160(4):1101–1106

    Article  Google Scholar 

  9. Durka PJ, Blinowska KJ (1995) Analysis of EEG transients by means of matching pursuit. Ann Biomed Eng 23:608–611

    Article  CAS  PubMed  Google Scholar 

  10. Durka PJ, Matysiak A, Martinez ME, Valdés SP, Blinowska KJ (2005) Multichannel matching pursuit and EEG inverse solutions. J Neurosci Methods 148(1):49–59

    Article  PubMed  Google Scholar 

  11. Grote L, Sommermeyer D, Zou D, Eder DN, Hedner J (2011) Oximeter-based autonomic state indicator algorithm for cardiovascular risk assessment. Chest 139(2):253–259

    Article  PubMed  Google Scholar 

  12. Guilbert JJ (2003) The world health report 2002—reducing risks, promoting healthy life. Educ Health (Abingdon) 16(2):230

    Article  CAS  Google Scholar 

  13. Khanoka B, Slovik Y, Landau D, Nitzan M (2004) Sympathetically induced spontaneous fluctuations of the photoplethysmographic signal. Med Biol Eng Comput 42(1):80–85

    Article  Google Scholar 

  14. Mallat S, Zhang Z (1993) Matching Pursuit in a time-frequency dictionary. IEEE Trans Signal Process 41:3397–3415

    Article  Google Scholar 

  15. Mannheimer PD (2007) The light-tissue interaction of pulse oximetry. Anesth Analg 105(6 Suppl):S10–S17

    Article  PubMed  Google Scholar 

  16. Mendels F et al (2006) Matching pursuit-based shape representation and recognition using scale-space. Int J Imaging Syst Technol 16(5):162–180

    Article  Google Scholar 

  17. Millasseau SC, Ritter JM, Takazawa K, Chowienczyk PJ (2006) Contour analysis of the photoplethysmographic pulse measured at the finger. J Hypertens 24:1449–1456

    Article  CAS  PubMed  Google Scholar 

  18. Myers RH et al (1990) Parental history is an independent risk factor for coronary artery disease: the Framingham Study. Am Heart J 120:963–969

    Article  CAS  PubMed  Google Scholar 

  19. Neff R, Zakhor A (1997) A very low bit-rate video coding based on matching pursuits. IEEE Trans Circuits Syst Video Technol 7(1):158–171

    Article  Google Scholar 

  20. Nitzan M et al (1998) The variability of the photoplethysmographic signal—a potential method for the evaluation of the autonomic nervous system. Physiol Meas 19:93–102

    Article  CAS  PubMed  Google Scholar 

  21. Pfeifer MA, Weinberg CR, Cook D, Best JD, Reenan A, Halter JB (1983) Differential changes of autonomic nervous system function with age in man. Am J Med 75:249–258

    Article  CAS  PubMed  Google Scholar 

  22. Rankine L, Mesbah M, Boashash B (2007) A matching pursuit-based signal complexity measure for the analysis of newborn EEG. Med Biol Eng Comput 45(3):251–260

    Article  CAS  PubMed  Google Scholar 

  23. Schönwald VS et al (2006) Benchmarking matching pursuit to find sleep spindles. J Neurosci Methods 156(1–2):314–321

    Article  PubMed  Google Scholar 

  24. Sommermeyer D, Zou D, Eder DN, Hedner J, Ficker JH, Randerath W, Priegnitz C, Penzel T, Fietze I, Sanner B, Grote L (2014) The use of overnight pulse wave analysis for recognition of cardiovascular risk factors and risk: a multicentric evaluation. J Hypertens 32(2):276–285. doi:10.1097/HJH.0000000000000039

    Article  CAS  PubMed  Google Scholar 

  25. Wang W, Guo Z, Yang J, Zhang Y, Durand LG, Loew M (2001) Analysis of the first heart sound using the matching pursuit method. Med Biol Eng Comput 39(6):644–648

    Article  CAS  PubMed  Google Scholar 

  26. Wang XH, Hong JR (1998) On the handling of fuzziness for continuous-valued attributes in decision tree generation. Fuzzy Sets Syst 99:283–290

    Article  Google Scholar 

  27. Weber T et al (2004) Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation 109:184–189

    Article  PubMed  Google Scholar 

  28. European Society of Hypertension-European Society of Cardiology Guidelines Committee (2003) 2003 European Society of Hypertension–European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 21(6):1011–1053

    Google Scholar 

Download references

Acknowledgments

Funding

The study was supported by Weinmann Geräte für Medizin GmbH & Co.KG, MCC GmbH & Co.KG, the German Ministry for Education and Science (BMBF), the Swedish Heart and Lung Foundation, the Gothenburg Medical Society and the Sahlgrenska Academy at the University of Gothenburg, Sweden.

Other contributions

The authors would like to express their gratitude for the support throughout the study to Jeanette Norum (Sahlgrenska), Lena Engelmark (Sahlgrenska), Martina Bögel (Weinmann, Hamburg, Germany), Matthias Schwaibold (MCC, Karlsruhe, Germany), and Bernd Schöller (MCC, Karlsruhe, Germany) for their technical and intellectual input during different parts of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Sommermeyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sommermeyer, D., Zou, D., Ficker, J.H. et al. Detection of cardiovascular risk from a photoplethysmographic signal using a matching pursuit algorithm. Med Biol Eng Comput 54, 1111–1121 (2016). https://doi.org/10.1007/s11517-015-1410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1410-8

Keywords

Navigation