Skip to main content

Advertisement

Log in

Network analysis of human fMRI data suggests modular restructuring after simulated acquired brain injury

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The pathophysiology underlying neurocognitive dysfunction following mild traumatic brain injury (TBI), or concussion, is poorly understood. In order to shed light on the effects of TBI at the functional network or modular level, our research groups are engaged in the acquisition and analysis of functional magnetic resonance imaging data from subjects post-TBI. Complementary to this effort, in this paper we use mathematical and computational techniques to determine how modular structure changes in response to specific mechanisms of injury. In particular, we examine in detail the potential effects of focal contusions, diffuse axonal degeneration and diffuse microlesions, illustrating the extent to which functional modules are preserved or degenerated by each type of injury. One striking prediction of our study is that the left and right hemispheres show a tendency to become functionally separated post-injury, but only in response to diffuse microlesions. We highlight other key differences among the effects of the three modelled injuries and discuss their clinical implications. These results may help delineate the functional mechanisms underlying several of the cognitive sequelae associated with TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72

    Article  CAS  PubMed  Google Scholar 

  2. Alexander-Bloch A, Gogtay N, Meunier D, Birn R, Clasen L, Lalonde F, Lenroot R, Giedd J, Bullmore E (2010) Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front Syst Neurosci 4(October):16

    Google Scholar 

  3. Aron AR, Durston S, Eagle DM, Logan GD, Stinear CM, Stuphorn V (2007) Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. J Neurosci 27(44):11860–11864

    Article  CAS  PubMed  Google Scholar 

  4. Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177

    Article  PubMed  Google Scholar 

  5. Bonnelle V, Ham T, Leech R, Kinnunen K, Mehta M, Greenwood R, Sharp D (2012) Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci USA 109(12):4690–4695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  CAS  PubMed  Google Scholar 

  7. Clark L, Blackwell AD, Aron AR, Turner DC, Dowson J, Robbins TW, Sahakian BJ (2007) Association between response inhibition and working memory in adult ADHD: A link to right frontal cortex pathology? Biol Psychiat 61(12):1395–1401

    Article  PubMed  Google Scholar 

  8. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173

    Article  CAS  PubMed  Google Scholar 

  9. de Haan W, van der Flier W, Koene T, Smits L, Scheltens P, Stam C (2012) Disrupted modular brain dynamics reflect cognitive dysfunction in Alzheimer’s disease. NeuroImage 59(4):3085–3093

    Article  PubMed  Google Scholar 

  10. Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94(1):018102

    Article  PubMed  Google Scholar 

  11. Faul M, Xu L, Wald MM, Coronado VG (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta

    Google Scholar 

  12. Gallos LK, Sigman M, Makse HA (2012) The conundrum of functional brain networks: small-world efficiency or fractal modularity. Front Physiol 3:123

    Article  PubMed  PubMed Central  Google Scholar 

  13. Greening SG, Finger EC, Mitchell DGV (2011) Parsing decision making processes in prefrontal cortex: response inhibition, overcoming learned avoidance, and reversal learning. NeuroImage 54(2):1432–1441

    Article  PubMed  Google Scholar 

  14. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):159

    Article  Google Scholar 

  15. He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q, Zang Y, Evans AC (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 4(4):5226

    Article  Google Scholar 

  16. Johnson V, Stewart W, Smith D (2012) Axonal pathology in traumatic brain injury. Exp Neurol 246:35–43

    Article  PubMed  PubMed Central  Google Scholar 

  17. Joyce K, Laurienti P, Burdette J, Hayasaka S (2010) A new measure of centrality for brain networks. PLoS One 5(8):e12200

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kitzbichler MG, Henson RNA, Smith ML, Nathan PJ, Bullmore ET (2011) Cognitive effort drives workspace configuration of human brain functional networks. J Neurosci 31(22):8259–8270

    Article  CAS  PubMed  Google Scholar 

  19. Knight R, Staines W, Swick D, Chao L (1999) Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychol Amst 101(2–3):159–178

    Article  CAS  PubMed  Google Scholar 

  20. Langfelder P, Bin Z, Horvath S (2008) Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24(5):719–720

    Article  CAS  PubMed  Google Scholar 

  21. Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21(5):375–378

    Article  PubMed  Google Scholar 

  22. Levin HS, Mattis S, Ruff RM, Eisenberg HM, Marshall LF, Tabaddor K, High WM Jr, Frankowski RF (1987) Neurobehavioral outcome following minor head injury: a three-center study. J Neurosurg 66(2):234–243

    Article  CAS  PubMed  Google Scholar 

  23. Maruta J, Lee S, Jacobs E, Ghajar J (2010) A unified science of concussion. Ann NY Acad Sci 1208(1):58–66

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mattson AJ, Levin H (1990) Frontal lobe dysfunction following closed head injury. A review of the literature. J Nerv Ment Dis 178(5):282–291

    Article  CAS  PubMed  Google Scholar 

  25. Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET (2009) Hierarchical modularity in human brain functional networks. Front Neuroinf 3:37

    Article  Google Scholar 

  26. Mitchell D (2011) The nexus between decision making and emotion regulation: a review of convergent neurocognitive substrates. Behav Brain Res 217(1):215–231

    Article  PubMed  Google Scholar 

  27. Moussa MN, Steen MR, Laurienti PJ, Hayasaka S (2012) Consistency of network modules in resting-state fMRI connectome data. PLoS One 7(8):44428

    Article  Google Scholar 

  28. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0

  29. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ravasz E, Somera A, Mongru D, Oltvai Z, Barabási A (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551

    Article  CAS  PubMed  Google Scholar 

  31. Roberts AC (2006) Primate orbitofrontal cortex and adaptive behaviour. Trends Cogn Sci 10(2):83–90

    Article  CAS  PubMed  Google Scholar 

  32. Song J, Birn RM, Boly M, Meier TB, Nair VA, Meyerand ME, Prabhakaran V (2014) Age-related reorganizational changes in modularity and functional connectivity of human brain networks. Brain Connect 4(9):662–676

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tagliazucchi E, Von Wegner F, Morzelewski A, Brodbeck V, Borisov S, Jahnke K, Laufs H (2013) Large-scale brain functional modularity is reflected in slow electroencephalographic rhythms across the human non-rapid eye movement sleep cycle. Neuroimage 70:327–339

    Article  PubMed  Google Scholar 

  34. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-D proportional system—an approach to cerebral imaging. Thieme Medical Publishers, Stuttgart, New York

  35. Uehara T, Yamasaki T, Okamoto T, Koike T, Kan S, Miyauchi S, Kira J-I, Tobimatsu S (2014) Efficiency of a small-world brain network depends on consciousness level: a resting-state fmri study. Cereb Cortex 24(6):1529–1539

    Article  PubMed  Google Scholar 

  36. Vargas ER, Mitchell D, Greening S, Wahl L (2014) Topology of whole-brain functional MRI networks: improving the truncated scale-free model. Phys A 405:151–158

    Article  Google Scholar 

  37. Wang J, Zuo X, Dai Z, Xia M, Zhao Z, Zhao X, Jia J, Han Y, He Y (2013) Disrupted functional brain connectome in individuals at risk for alzheimer’s disease. Biol Psychiatry 73(5):472–481

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Zuo X, He Y (2010) Graph-based network analysis of resting-state functional MRI. Front Syst Neurosci 4:16

    PubMed  PubMed Central  Google Scholar 

  39. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4(1):17

    Google Scholar 

Download references

Acknowledgments

This work was funded by a CONACYT grant (ERV), NSERC grant (Discovery Grant to LMW, and Discovery Grant to DGM) and the Canada Research Chairs program (LMW). The authors would like to thank Michael Radford for assisting in data preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ruiz Vargas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz Vargas, E., Mitchell, D.G.V., Greening, S.G. et al. Network analysis of human fMRI data suggests modular restructuring after simulated acquired brain injury. Med Biol Eng Comput 54, 235–248 (2016). https://doi.org/10.1007/s11517-015-1396-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1396-2

Keywords

Navigation