Skip to main content

Advertisement

Log in

Synthesis of optimal electrical stimulation patterns for functional motion restoration: applied to spinal cord-injured patients

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

We investigated the synthesis of electrical stimulation patterns for functional movement restoration in human paralyzed limbs. We considered the knee joint system, co-activated by the stimulated quadriceps and hamstring muscles. This synthesis is based on optimized functional electrical stimulation (FES) patterns to minimize muscular energy consumption and movement efficiency criteria. This two-part work includes a multi-scale physiological muscle model, based on Huxley’s formulation. In the simulation, three synthesis strategies were investigated and compared in terms of muscular energy consumption and co-contraction levels. In the experimental validation, the synthesized FES patterns were carried out on the quadriceps-knee joint system of four complete spinal cord injured subjects. Surface stimulation was applied to all subjects, except for one FES-implanted subject who received neural stimulation. In each experimental validation, the model was adapted to the subject through a parameter identification procedure. Simulation results were successful and showed high co-contraction levels when reference trajectories were tracked. Experimental validation results were encouraging, as the desired and measured trajectories showed good agreement, with an 8.4 % rms error in a subject without substantial time-varying behavior. We updated the maximal isometric force in the model to account for time-varying behavior, which improved the average rms errors from 31.4 to 13.9 % for all subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benoussaad M, Poignet P, Guiraud D (2007) Optimal patterns synthesis approach for knee motion under functional electrical stimulation. In: 12th Annual Conference of the International FES Society, Philadelphia, PA, USA

  2. Benoussaad M, Poignet P, Guiraud D (2008) Optimal functional electrical stimulation patterns synthesis for knee joint control. In: Intelligent robots and systems, 2008. IROS 2008. IEEE/RSJ International Conference on Nice, pp 2386–2391. doi:10.1109/IROS.2008.4651112

  3. Benoussaad M, Poignet P, Hayashibe M, Azevedo-Coste C, Fattal C, Guiraud D (2013) Experimental parameter identification of a multi-scale musculoskeletal model controlled by electrical stimulation: application to patients with spinal cord injury. Med Biol Eng Comput 51:617–31. doi:10.1007/s11517-013-1032-y

    Article  PubMed  Google Scholar 

  4. Chae J, Kilgore K, Triolo R, Creasey G, DiMarco A (2004) Functional neuromuscular stimulation. In: DeLisa J, Gans D (eds) Rehabilitation medicine: principles and practice, 4th edn. J. B. Lippincott Company, Philadelphia, pp 1405–1425

  5. Chang GC, Luh JJ, Liao GD, Lai JS, Cheng CK, Kuo BL, Kuo TS (1997) A Neuro-control system for the knee joint position control with quadriceps stimulation. IEEE Trans Rehabil Eng 5:2–11

    Article  CAS  PubMed  Google Scholar 

  6. Chizeck H, Kobetic R, Marsolais EB, Abbas JJ, Donner IH, Simon E (1988) Control of functional neuromuscular stimulation systems for standing and locomotion in paraplegics. Proc IEEE 76:1155–1165

    Article  Google Scholar 

  7. Dariush B, Parnianpour M, Hemami H (1998) Stability and a control strategy of a multilink musculoskeletal model with applications in FES. IEEE Trans Biomed Eng 45:3–14

    Article  CAS  PubMed  Google Scholar 

  8. El Makssoud H, Guiraud D, Poignet P, Hayashibe M, Wieber PB, Yoshida K, Azevedo-Coste C (2011) Multiscale modeling of skeletal muscle properties and experimental validations in isometric conditions. Biol Cybern 105:121–138. doi:10.1007/s00422-011-0445-7

    Article  PubMed  Google Scholar 

  9. Ferrarin M, Palazzo F, Riener R, Quintern J (2001) Model-based control of FES-induced single joint movements. IEEE Trans Rehabil Eng 9:245–257

    Article  CAS  Google Scholar 

  10. Franken DHM, Veltink PPH, Tijsmans IR, Nijmeijer DH, Boom PHBK (1993) Identification of passive knee joint and shank dynamics in paraplegics using quadriceps stimulation. IEEE Trans Rehabil Eng 1:154–164

    Article  Google Scholar 

  11. Guiraud D, Stieglitz T, Koch KP, Divoux JL, Rabischong P (2006) An implantable neuroprosthesis for standing and walking in paraplegia: 5-year patient follow-up. J Neural Eng 3:268–275

    Article  PubMed  Google Scholar 

  12. Hatze H (1978) A general myocybernetic control model of skeletal muscle. Biol Cybern 157:143–157

    Article  Google Scholar 

  13. Hatze H (1981) Myocybernetic control models of skeletal muscle. University of South Africa, South Africa

    Google Scholar 

  14. Hawkins D, Hull M (1990) A method for determining lower extremity muscle-tendon lengths during flexion/extension movements. J Biomech 23:487–494

    Article  CAS  PubMed  Google Scholar 

  15. Hill AV (1938) The heat of shortening and the dynamic constants of muscle. R Soc Lond Proc Ser B 126:136–195

    Article  Google Scholar 

  16. Hogan N (1984) Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans Automat Contr 29:681–690

    Article  Google Scholar 

  17. Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    CAS  PubMed  Google Scholar 

  18. Khalil W, Dombre E (2004) Trajectory generation. In: Khalil W, Dombre E (eds) Modeling, identification and control of robots. Butterworth-Heinemann, Oxford, pp 313–345

  19. Kobetic R, Marsolais B (1994) Synthesis of paraplegic gait with multichannel functional neuromuscular stimulation. IEEE Trans Rehabil Eng 2:66–79

    Article  Google Scholar 

  20. Levy M, Mizrahi J, Susak Z (1990) Recruitment, force and fatigue characteristics of quadriceps muscles of paraplegics isometrically activated by surface functional electrical stimulation. J Biomed Eng 12:150–156. doi:10.1016/0141-5425(90)90136-B

    Article  CAS  PubMed  Google Scholar 

  21. Lin DC, Rymer WZ (1991) A quantitative analysis of pendular motion of the lower leg in spastic human subjects. IEEE Trans Biomed Eng 38:906–918. doi:10.1109/10.83611

    Article  CAS  PubMed  Google Scholar 

  22. McNeal D, Nakai R, Meadows P, Tu W (1989) Open-loop control of the freely-swinging paralyzed leg. IEEE Trans Biomed Eng 36:895–905

    Article  CAS  PubMed  Google Scholar 

  23. Migliore SA, Brown EA, DeWeerth SP (2005) Biologically inspired joint stiffness control. In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 4508–4513. doi:10.1109/ROBOT.2005.1570814

  24. Popović D, Stein RB, Oguztöreli MN, Lebiedowska M, Jonić S (1999) Optimal control of walking with functional electrical stimulation: a computer simulation study. IEEE Trans Rehabil Eng 7:69–79

    Article  PubMed  Google Scholar 

  25. Riener R, Fuhr T (1998) Patient-driven control of FES-supported standing up: a simulation study. IEEE Trans Rehabil Eng 6:113–124

    Article  CAS  PubMed  Google Scholar 

  26. Riener R, Quintern J, Psaier E, Schmidt G (1996) Physiological based multi-input model of muscle activation. Neuroprosthetics 12:95–114

    Google Scholar 

  27. Stein RB, Zehr EP, Lebiedowska MK, Popović DB, Scheiner A, Chizeck HJ (1996) Estimating mechanical parameters of leg segments in individuals with and without physical disabilities. IEEE Trans Rehabil Eng 4:201–211

    Article  CAS  PubMed  Google Scholar 

  28. Veltink PH, Chizeck HJ, Crago PE, El-Bialy A (1992) Nonlinear joint angle control for artificially stimulated muscle. IEEE Trans Biomed Eng 39:368–380. doi:10.1109/10.126609

    Article  CAS  PubMed  Google Scholar 

  29. Winters JM (1990) Hill-based muscle models: a systems engineering perspective. In: Winters JM, Woo SY (eds) Chapter 5 Multiple muscle systems: biomechanics and movement organization, New York: Springer, pp 69–93

    Chapter  Google Scholar 

  30. Zhou BH, Katz SR, Baratta RV, Solomonow M, D’Ambrosia RD (1997) Evaluation of antagonist coactivation strategies elicited from electrically stimulated muscles under load-moving conditions. IEEE Trans Biomed Eng 44:620–633

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the patients for their participation and patience, and also Maria Papaiordanidou, Robin Passama and Patrick Benoit for their help during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Benoussaad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benoussaad, M., Poignet, P., Hayashibe, M. et al. Synthesis of optimal electrical stimulation patterns for functional motion restoration: applied to spinal cord-injured patients. Med Biol Eng Comput 53, 227–240 (2015). https://doi.org/10.1007/s11517-014-1227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1227-x

Keywords

Navigation