Skip to main content

Advertisement

Log in

Extracting the parameters of the double-dispersion Cole bioimpedance model from magnitude response measurements

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In the field of bioimpedance measurements, the Cole impedance model is widely used for characterizing biological tissues and biochemical materials. In this work, a nonlinear least squares fitting is applied to extract the double-dispersion Cole impedance parameters from simulated magnitude response datasets without requiring the direct impedance data or phase information. The technique is applied to extract the impedance parameters from MATLAB simulated noisy magnitude datasets showing less than 1.2 % relative error when 60 dB SNR Gaussian white noise is present. This extraction is verified experimentally using apples as the Cole impedances showing less than 3 % relative error between simulated responses (using the extracted impedance parameters) and the experimental results over the entire dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S (2004) Skin cancer identification using multifrequency electrical impedance—a potential screening tool. IEEE Trans. Biomed. Eng. 51:2097–2102

    Article  PubMed  Google Scholar 

  2. Atefi SR, Seoane F, Thorlin T, Lindecrantz K (2013) Stroke damage detection using classification trees on electrical bioimpedance cerebral spectroscopy measurements. Sensors 13:10074–10086

    Article  PubMed Central  PubMed  Google Scholar 

  3. Ayllon D, Seoane F, Gil-Pita R (2009) Cole equation and parameter estimation from electrical bioimpedance spectroscopy measurements—a comparative study. In: IEEE International Conference on Engineering in Medicine and Biology Society, Minneapolis, USA, pp 3779–3782

  4. Buendia R, Gil-Pita R, Seoane F (2011) Cole parameter estimation from the modulus of the electrical bioimpedance for assessment of body composition. A full spectroscopy approach. J Electr Bioimpedance 2:72–78

    Google Scholar 

  5. Cole KS (1940) Permeability and impermeability of cell membranes for ions. Proc Cold Spring Harbor Symp Quant Biol 8:110–122

    Article  CAS  Google Scholar 

  6. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351

    CAS  Google Scholar 

  7. Coleman T, Li Y (1996) An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 6:418–445

    Article  Google Scholar 

  8. Eldarrat AH, Wood DJ, Kale GM, High AS (2007) Age-related changes in ac-impedance spectroscopy studies of normal human dentine. J Mater Sci Mater Med 18:1203–1210

    CAS  PubMed  Google Scholar 

  9. Elwakil AS, Maundy B (2010) Extracting the Cole–Cole impedance model parameters without direct impedance measurement. Electron Lett 46:1367–1368

    Article  Google Scholar 

  10. Elwakil AS, Maundy B (2011) Experimental technique for estimating the dispersion coefficient of a constant phase element. In: European conference circuit theory and design, Linkoping, Sweden, pp 469–471

  11. Ferreira J, Seoane F, Lindecrantz K (2011) AD5933-based electrical bioimpedance spectrometer towards textile-enabled applications. In: IEEE international conference engineering in medicine and biology society, Boston, USA, pp 3282–3285

  12. Freeborn TJ (2013) A survey of fractional-order circuit models for biology and biomedicine. IEEE J Emerg Sel Top Circuits Syst 3:367–376

    Article  Google Scholar 

  13. Freeborn TJ, Maundy B, Elwakil A (2012) Improved Cole–Cole parameter extraction from frequency response using least squares fitting. In: IEEE international symposium circuits systems, Seoul, South Korea, pp 337–340

  14. Freeborn TJ, Maundy B, Elwakil A (2012) Least squares estimation technique of Cole–Cole parameters from step response. Electron Lett 48:752–754

    Article  Google Scholar 

  15. Freeborn TJ, Maundy B, Elwakil A (2013) Cole impedance extractions from the step-response of a current excited fruit sample. Comput Electron Agric 98:100–108

    Article  Google Scholar 

  16. Grimnesand S, Martinsen O (2008) Bioimpedance and bioelectricity basics, 2nd edn. Academic Press, London

    Google Scholar 

  17. Keshtkar A, Salehnia Z, Keshtkar A, Shokouhi B (2012) Bladder cancer detection using electrical impedance technique (tabriz mark 1). Res Int Pathol. doi:10.1155/2012/470101

  18. Krishna B, Reddy K (2008) Active and passive realization of fractance device of order 1/2. Passive Electron Compon Act. doi:10.1155/2008/369421

  19. Kun S, Ristic B, Peura RA, Dunn RM (1999) Real-time extraction of tissue impedance model parameters for electrical impedance spectrometer. Med Biol Eng Comput 37:428–432

    Article  CAS  PubMed  Google Scholar 

  20. Maundy B, Elwakil AS (2012) Extracting single dispersion Cole–Cole impedance model parameters using an integrator setup. Analog Integr Circ Sig Process 71:107–110

    Article  Google Scholar 

  21. McRae DA, Esrick MA, Mueller SC (1999) Changes in the noninvasive, in vivo electrical impedance of three xenografts during the necrotic cell-response sequence. Int J Radiat Oncol Biol Phys 43:849–857

    Article  CAS  PubMed  Google Scholar 

  22. Paterno AS, Stiz RA, Bertemes-Filho P (2009) Frequency-domain reconstruction of signals in electrical bioimpedance spectroscopy. Med Biol Eng Comput 47:1093–1102

    Article  PubMed  Google Scholar 

  23. Podlubny I, Petras I, Vinagre B, O’Leary P, Dorcak L (2012) Analogue realizations of fractional-order controllers. Nonlinear Dyn 29:281–296

    Article  Google Scholar 

  24. Rigaud B, Hamzaoui L, Frikha MR, Chauveau N, Morucci JP (1995) In vitro tissue characterization and modelling using electrical impedance measurements in the 100 Hz–10 MHz frequency range. Physiol Meas 16:A15–A28

    Article  CAS  PubMed  Google Scholar 

  25. Solmaz H, Ulgen Y, Tumer M (2009) Design of a micro-controller based Cole–Cole impedance meter for testing biological tissues. In: World congress on medical physics and biomedical engineering, Munich, Germany, pp 488–491

  26. Ward LC, Essex T, Cornish BH (2006) Determination of Cole parameters in multiple frequency bioelectrical impedance analysis using only the measurement of impedances. Physiol Meas 27:839–850

    Article  PubMed  Google Scholar 

  27. Westerlund S, Ekstam L (1994) Capacitor theory. IEEE Trans Dielectr Electr Insul 1:826–839

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Todd Freeborn would like to acknowledge Canada’s National Sciences and Engineering Research Council (NSERC), Alberta Innovates—Technology Futures, and Alberta Advanced Education & Technology for their financial support of this research through their graduate student scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd J. Freeborn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freeborn, T.J., Maundy, B. & Elwakil, A.S. Extracting the parameters of the double-dispersion Cole bioimpedance model from magnitude response measurements. Med Biol Eng Comput 52, 749–758 (2014). https://doi.org/10.1007/s11517-014-1175-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1175-5

Keywords

Navigation