Skip to main content
Log in

Age estimation using cortical surface pattern combining thickness with curvatures

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Brain development and healthy aging have been proved to follow a specific pattern, which, in turn, can be applied to help doctors diagnose mental diseases. In this paper, we design a cortical surface pattern (CSP) combining the cortical thickness with curvatures, which constructs an accurate human age estimation model with relevance vector regression. We test our model with two public databases. One is the IXI database (360 healthy subjects aging from 20 to 82 years old were selected), and the other is the INDI database (303 subjects aging from 7 to 22 years old were selected). The results show that our model can achieve as small as 4.57 years deviation in the IXI database and 1.38 years deviation in the INDI database. Furthermore, we employ this surface pattern to age groups classification and get a remarkably high accuracy (97.77 %) and a significantly high sensitivity/specificity (97.30/98.10 %). These results suggest that our designed CSP combining thickness with curvatures is stable and sensitive to brain development, and it is much more powerful than voxel-based morphometry used in previous methods for age estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113

    Article  PubMed  Google Scholar 

  2. Brown TT, Kuperman JM, Chung Y, Erhart M, McCabe C, Hagler DJ Jr, Venkatraman VK, Akshoomoff N, Amaral DG, Bloss CS, Casey BJ, Chang L, Ernst TM, Frazier JA, Gruen JR, Kaufmann WE, Kenet T, Kennedy DN, Murray SS, Sowell ER, Jernigan TL, Dale AM (2012) Neuroanatomical assessment of biological maturity. Curr Biol 22(18):1693–1698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194

    Article  CAS  PubMed  Google Scholar 

  4. Davatzikos C, Xu F, An Y, Fan Y, Resnick SM (2009) Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain 132(Pt 8):2026–2035

    Article  PubMed Central  PubMed  Google Scholar 

  5. Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1):1–15

    Article  PubMed Central  PubMed  Google Scholar 

  6. Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20(1):70–80

    Article  CAS  PubMed  Google Scholar 

  9. Franke K, Ziegler G, Kloppel S, Gaser C (2010) Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50(3):883–892

    Article  PubMed  Google Scholar 

  10. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1):21–36

    Article  CAS  PubMed  Google Scholar 

  11. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422

    Article  Google Scholar 

  12. Hutton C, Draganski B, Ashburner J, Weiskopf N (2009) A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage 48(2):371–380

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kirkpatrick B, Messias E, Harvey PD, Fernandez-Egea E, Bowie CR (2008) Is schizophrenia a syndrome of accelerated aging? Schizophr Bull 34(6):1024–1032

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI’95 proceedings of the 14th international joint conference on artificial intelligence, vol 2. Morgan Kaufmann Publishers Inc., San Francisco, pp 1137–1145

  15. Lao ZQ, Shen DG, Xue Z, Karacali B, Resnick SM, Davatzikos C (2004) Morphological classification of brains via high-dimensional shape transformations and machine learning methods. Neuroimage 21(1):46–57

    Article  PubMed  Google Scholar 

  16. Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, Mattay VS (2012) Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging 33(3):617–e1

    Google Scholar 

  17. Long X, Liao W, Jiang C, Liang D, Qiu B, Zhang L (2012) Healthy aging: an automatic analysis of global and regional morphological alterations of human brain. Acad Radiol 19(7):785–793

    Article  PubMed  Google Scholar 

  18. Pienaar R, Fischl B, Caviness V, Makris N, Grant PE (2008) A methodology for analyzing curvature in the developing brain from preterm to adult. Int J Imaging Syst Technol 18(1):42–68

    Article  PubMed Central  PubMed  Google Scholar 

  19. Poldrack RA (2007) Region of interest analysis for fMRI. Soc Cogn Affect Neurosci 2(1):67–70

    Article  PubMed Central  PubMed  Google Scholar 

  20. Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23(8):3295–3301

    CAS  PubMed  Google Scholar 

  21. Rimol LM, Nesvag R, Hagler DJ, Bergmann O, Fennema-Notestine C, Hartberg CB, Haukvik UK, Lange E, Pung CJ, Server A, Melle I, Andreassen OA, Agartz I, Dale AM (2012) Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biol Psychiatry 71(6):552–560

    Article  PubMed  Google Scholar 

  22. Ronan L, Pienaar R, Williams G, Bullmore E, Crow TJ, Roberts N, Jones PB, Suckling J, Fletcher PC (2011) Intrinsic curvature: a marker of millimeter-scale tangential cortico-cortical connectivity? Int J Neural Syst 21(05):351–366

    Article  PubMed Central  PubMed  Google Scholar 

  23. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22(3):1060–1075

    Article  CAS  PubMed  Google Scholar 

  24. Segonne F, Pacheco J, Fischl B (2007) Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26(4):518–529

    Article  PubMed  Google Scholar 

  25. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Greenstein D, Clasen L, Evans A, Rapoport JL, Giedd JN, Wise SP (2008) Neuro developmental trajectories of the human cerebral cortex. J Neurosci 28(14):3586–3594

    Article  CAS  PubMed  Google Scholar 

  26. Silk TJ, Wood AG (2011) Lessons about neurodevelopment from anatomical magnetic resonance imaging. J Dev Behav Pediatr 32(2):158–168

    Article  PubMed  Google Scholar 

  27. Sonnenburg S, Ratsch G, Schafer C, Scholkopf B (2006) Large scale multiple kernel learning. J Mach Learn Res 7:1531–1565

    Google Scholar 

  28. Su L, Wang L, Chen F, Shen H, Li B, Hu D (2012) Sparse representation of brain aging: extracting covariance patterns from structural MRI. PLoS ONE 7(5):e36147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Taki Y, Thyreau B, Kinomura S, Sato K, Goto R, Kawashima R, Fukuda H (2011) Correlations among brain gray matter volumes, age, gender, and hemisphere in healthy individuals. PLoS ONE 6(7):e22734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Terribilli D, Schaufelberger MS, Duran FL, Zanetti MV, Curiati PK, Menezes PR, Scazufca M, Amaro E Jr, Leite CC, Busatto GF (2011) Age-related gray matter volume changes in the brain during non-elderly adulthood. Neurobiol Aging 32(2):354–368

    Article  PubMed Central  PubMed  Google Scholar 

  31. Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1(3):211–244

    Google Scholar 

  32. Wang J, Dai D, Li M, Hua J, He H (2012) Human age estimation with surface-based features from MRI images. In: Wang F et al (eds) Machine learning in medical imaging. Springer, Berlin Heidelberg, pp 111–118

    Chapter  Google Scholar 

  33. Wang Y, Fan Y, Bhatt P, Davatzikos C (2010) High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. Neuroimage 50(4):1519–1535

    Article  PubMed Central  PubMed  Google Scholar 

  34. Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by 863 Project (2013AA013803), National Natural Science Foundation of China (61271151, 61228103), National Sanitation Foundation (IIS-0915933, IIS-0937586 and IIS-0713315) and National Institutes of Health (1R01NS058802-01, 2R01NS041922-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiguang He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Li, W., Miao, W. et al. Age estimation using cortical surface pattern combining thickness with curvatures. Med Biol Eng Comput 52, 331–341 (2014). https://doi.org/10.1007/s11517-013-1131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1131-9

Keywords

Navigation