Skip to main content
Log in

Denoising performance of modified dual-tree complex wavelet transform for processing quadrature embolic Doppler signals

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Quadrature signals are dual-channel signals obtained from the systems employing quadrature demodulation. Embolic Doppler ultrasound signals obtained from stroke-prone patients by using Doppler ultrasound systems are quadrature signals caused by emboli, which are particles bigger than red blood cells within circulatory system. Detection of emboli is an important step in diagnosing stroke. Most widely used parameter in detection of emboli is embolic signal-to-background signal ratio. Therefore, in order to increase this ratio, denoising techniques are employed in detection systems. Discrete wavelet transform has been used for denoising of embolic signals, but it lacks shift invariance property. Instead, dual-tree complex wavelet transform having near-shift invariance property can be used. However, it is computationally expensive as two wavelet trees are required. Recently proposed modified dual-tree complex wavelet transform, which reduces the computational complexity, can also be used. In this study, the denoising performance of this method is extensively evaluated and compared with the others by using simulated and real quadrature signals. The quantitative results demonstrated that the modified dual-tree-complex-wavelet-transform-based denoising outperforms the conventional discrete wavelet transform with the same level of computational complexity and exhibits almost equal performance to the dual-tree complex wavelet transform with almost half computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Achim A, Bezerianos A, Tsakalides P (2001) Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans Med Imaging 20(8):772–783

    Article  CAS  PubMed  Google Scholar 

  2. Ackerstaff RG, Babikian VL, Georgiadis D, Russell D, Siebler M, Spencer MP, Stump D (1995) Basic identification criteria of Doppler microembolic signals. Stroke 26:1123

    Article  Google Scholar 

  3. Aydin N, Evans DH (1994) Implementation of directional Doppler techniques using a digital signal processor. Med Biol Eng Comput 32:157–164

    Article  Google Scholar 

  4. Aydin N, Fan L, Evans DH (1994) Quadrature-to-directional format conversion of Doppler signals using digital methods. Physiol Meas 15:181–199

    Article  CAS  PubMed  Google Scholar 

  5. Aydin N, Marvasti F, Markus HS (2002) Effect of wavelet denoising on time-frequency and time-scale analysis of quadrature embolic signals. In: Proceedings of 24th annual international conference of the IEEE engineering in medicine and biology society, Houston, pp 80–81

  6. Aydin N, Marvasti F, Markus HS (2004) Embolic Doppler ultrasound signal detection using discrete wavelet transform. IEEE Trans Inf Tech Biomed 8(2):182–190

    Article  Google Scholar 

  7. Boashash B (1992) Estimating and interpreting the instantaneous frequency of a signal: a tutorial review—part 2: algorithms and applications. Proc IEEE 80:539–568

    Google Scholar 

  8. Brigham EO (1974) The fast Fourier transform. Prentice Hall Inc, Englewood Cliffs, NJ

  9. Chang SG, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. Trans Image Process 9(9):1532–1546

    Article  CAS  Google Scholar 

  10. Cohen L (1989) Time-frequency distributions—a review. Proc IEEE 77(7):941–981

    Article  Google Scholar 

  11. Donoho DL (1995) Denoising by soft-thresholding. IEEE Trans Inf Theory 41:613–647

    Article  Google Scholar 

  12. Donoho DL, Johnstone IM (1994) Ideal spatial adaptation via wavelet shrinkage. Biometrika 81:425–455

    Article  Google Scholar 

  13. Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc 90(432):1200–1224

    Article  Google Scholar 

  14. Donoho DL, Johnstone IM (1998) Minimax estimation via wavelet shrinkage. Ann Stat 26(3):879–921

    Article  Google Scholar 

  15. Evans DH, McDicken WN, Skidmore R, Woodcock JP (1989) Doppler Ultrasound: Physics, Instrumentation and Clinical Applications. Wiley, Chichester

    Google Scholar 

  16. Fan L, Evans DH, Naylor AR, Tortoli P (2004) Real-time identification and archival of microembolic Doppler signals using a knowledge-based system. Med Biol Eng Comput 42:193–204

    Article  CAS  PubMed  Google Scholar 

  17. Kingsbury NG (1998) The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters. IEEE Digital Signal Process Workshop Bryce Canyon 86:319–322

    Google Scholar 

  18. Kingsbury NG (1999) Image processing with complex wavelets. Philos Trans R Soc Lond A 357:2543–2560

    Article  Google Scholar 

  19. Krim H, Tucker D, Mallat S, Donoho D (1999) On denoising and best signal representation. IEEE Trans Inf Theory 45(7):2225–2238

    Article  Google Scholar 

  20. Li H, Zhang Y, Xu D (2010) Noise and speckle reduction in Doppler blood flow spectrograms using an adaptive pulse-coupled neural network. EURASIP J Adv Signal Process. doi:10.1155/2010/918015

  21. Markus H (1993) Transcranial Doppler detection of circulating cerebral emboli. A review. Stroke 24(8):1246–1250

    Google Scholar 

  22. Markus HS, Harrison MJ (1995) Microembolic signal detection using ultrasound. Stroke 26:1517–1519

    Article  CAS  PubMed  Google Scholar 

  23. Markus HS, Molloy J (1997) The use of a decibel threshold in the detection of embolic signals. Stroke 28:692–695

    Article  CAS  PubMed  Google Scholar 

  24. Markus HS, Reid G (1999) Frequency filtering improves ultrasonic embolic signal detection. Ultrasound Med Biol 25:857–860

    Article  CAS  PubMed  Google Scholar 

  25. Markus H, Loh A, Brown MM (1993) Computerized detection of cerebral emboli and discrimination from artifact using Doppler ultrasound. Stroke 24(11):1667–1672

    Article  CAS  PubMed  Google Scholar 

  26. Marvasti S, Gillies D, Marvasti F, Markus HS (2004) Online automated detection of cerebral embolic signals using a wavelet based system. Ultrasound in Med Biol 30:647–653

    Article  Google Scholar 

  27. Marvasti S, Gillies D, Markus HS (2004) Novel intelligent wavelet filtering of embolic signals from TCD ultrasound. Conference record of the thirty-eighth Asilomar conference on signals, systems and computers, vol 2, pp 1580–1584

  28. Pasti L, Walczak B, Massart DL, Reschiglian P (1999) Optimization of signal denoising in discrete wavelet transform. Chemom Intell Lab Syst 48:21–34

    Article  CAS  Google Scholar 

  29. Selesnick IW, Baraniuk RG, Kingsbury NG (2005) The dual-tree complex wavelet transform. IEEE Signal Process Mag 22(6):123–151

    Article  Google Scholar 

  30. Serbes G, Aydin N, (2009) A complex discrete wavelet transform for processing quadrature Doppler ultrasound signals. In: 9th international conference on information technology and applications in biomedicine ITAB 2009

  31. Serbes G, Aydin N, (2010) Denoising performance of modified dual tree complex wavelet transform. In: 10th international conference on information technology and applications in biomedicine ITAB 2010, pp 1–4

  32. Serbes G, Aydin N (2011) Modified dual tree complex wavelet transform for processing quadrature signals. Biomed Signal Process Control 6(3):301–306

    Article  Google Scholar 

  33. Spencer MP, Thomas GI, Nicholls SC, Sauvage LR (1990) Detection of middle cerebral artery emboli during carotid endarterectomy using transcranial Doppler ultrasonography. Stroke 21:415–423

    Article  CAS  PubMed  Google Scholar 

  34. Taswell C (2000) The what, how, and why of wavelet shrinkage denoising. Comput Sci Eng 2(3):12–19

    Article  Google Scholar 

  35. Yoon BJ, Vaidyanathan PP (2004) Wavelet-based denoising by customized thresholding. IEEE Int Conf Acoust Speech Signal Process 2:925–928

    Google Scholar 

  36. Zhang Y, Wang L, Gao Y, Chen J, Shi X (2007) Noise reduction in Doppler ultrasound signals using an adaptive decomposition algorithm. Med Eng Phys 29(6):699–707

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizamettin Aydin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serbes, G., Aydin, N. Denoising performance of modified dual-tree complex wavelet transform for processing quadrature embolic Doppler signals. Med Biol Eng Comput 52, 29–43 (2014). https://doi.org/10.1007/s11517-013-1114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1114-x

Keywords

Navigation