Skip to main content
Log in

Enhanced phase synchronization of blood flow oscillations between heated and adjacent non-heated sacral skin

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The study of skin microcirculation may be used to assess risk for pressure ulcers. It is observed that local heating causes an increase in blood flow of not only the heated skin, but also in the adjacent non-heated skin. The underlying physiological mechanism of this indirect vasodilation of the non-heated skin remains unclear. We hypothesized that blood flow oscillations (BFO) in the adjacent non-heated skin area synchronize with BFO in the heated skin, thus inducing a vasodilatory response. We investigated BFO in the heated and adjacent non-heated skin (12.1 ± 1.2-cm distance) on the sacrum in 12 healthy participants. The ensemble empirical mode decomposition (EEMD) was used to decompose blood flow signals into a set of intrinsic mode functions (IMFs), and the IMFs with power spectra over the frequency range of 0.0095–0.02, 0.02–0.05, and 0.05–0.15 Hz were chosen as the characteristic components corresponding to metabolic, neurogenic, and myogenic regulations, respectively. Then, the instantaneous phase of the characteristic components was calculated using the Hilbert transform. From the time series of phase difference between a pair of characteristic components, the epochs of phase synchronization were detected. The results showed that myogenic and neurogenic BFO exhibited self-phase synchronization during the slower vasodilation of the heated skin. In the non-heated skin, the degree of synchronization of BFO is associated with the changes in blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BFO:

Blood flow oscillations

EEMD:

Ensemble empirical mode decomposition

IMF:

Intrinsic mode functions

References

  1. Bartsch R, Kantelhardt JW, Penzel T, Havlin S (2007) Experimental evidence for phase synchronization transitions in the human cardiorespiratory system. Phys Rev Lett 98(5):054102

    Article  PubMed  Google Scholar 

  2. Bernjak A, Deitrick GA, Bauman WA, Stefanovska A, Tuckman J (2011) Basal sympathetic activity to the microcirculation in tetraplegic man revealed by wavelet transform of laser Doppler flowmetry. Microvasc Res 81(3):313–318

    Article  PubMed  CAS  Google Scholar 

  3. Brooks EM, Morgan AL, Pierzga JM, Wladkowski SL, O’Gorman JT, Derr JA, Kenney WL (1997) Chronic hormone replacement therapy alters thermoregulatory and vasomotor function in postmenopausal women. J Appl Physiol 83(2):477–484

    PubMed  CAS  Google Scholar 

  4. Charkoudian N (2003) Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 78(5):603–612

    Article  PubMed  Google Scholar 

  5. Gabor D (1946) Theory of communication. J IEE 93(26):429–457

    Google Scholar 

  6. Haddock RE, Hirst GD, Hill CE (2002) Voltage independence of vasomotion in isolated irideal arterioles of the rat. J Physiol 540(Pt 1):219–229

    Article  PubMed  CAS  Google Scholar 

  7. Houghton BL, Meendering JR, Wong BJ, Minson CT (2006) Nitric oxide and noradrenaline contribute to the temperature threshold of the axon reflex response to gradual local heating in human skin. J Physiol 572(Pt 3):811–820

    PubMed  CAS  Google Scholar 

  8. Huang NE, Shen Z, Long SR, Wu MLC, Shih HH, Zheng QN, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Series A Math Phys Eng Sci 454(1971):903–995

    Article  Google Scholar 

  9. Humeau A, Steenbergen W, Nilsson H, Stromberg T (2007) Laser Doppler perfusion monitoring and imaging: novel approaches. Med Biol Eng Comput 45(5):421–435

    Article  PubMed  Google Scholar 

  10. Jan YK, Brienza DM, Geyer MJ (2005) Analysis of week-to-week variability in skin blood flow measurements using wavelet transforms. Clin Physiol Funct Imaging 25(5):253–262

    Article  PubMed  Google Scholar 

  11. Jan YK, Brienza DM, Geyer MJ, Karg P (2008) Wavelet-based spectrum analysis of sacral skin blood flow response to alternating pressure. Arch Phys Med Rehabil 89(1):137–145

    Article  PubMed  Google Scholar 

  12. Jan YK, Struck BD, Foreman RD, Robinson C (2009) Wavelet analysis of sacral skin blood flow oscillations to assess soft tissue viability in older adults. Microvasc Res 78(2):162–168

    Article  PubMed  Google Scholar 

  13. Jan YK, Struck BD, Foreman RD, Robinson C (2009) Wavelet analysis of sacral skin blood flow oscillations to assess soft tissue viability in older adults. Microvasc Res 78(2):162–168

    Article  PubMed  Google Scholar 

  14. Jan YK, Jones MA, Rabadi MH, Foreman RD, Thiessen A (2010) Effect of wheelchair tilt-in-space and recline angles on skin perfusion over the ischial tuberosity in people with spinal cord injury. Arch Phys Med Rehabil 91(11):1758–1764

    Article  PubMed  Google Scholar 

  15. Jan YK, Brienza DM, Boninger ML, Brenes G (2011) Comparison of skin perfusion response with alternating and constant pressures in people with spinal cord injury. Spinal Cord 49(1):136–141

    Article  PubMed  Google Scholar 

  16. Karavaev AS, Prokhorov MD, Ponomarenko VI, Kiselev AR, Gridnev VI, Ruban EI, Bezruchko BP (2009) Synchronization of low-frequency oscillations in the human cardiovascular system. Chaos 19(3)

  17. Karavaev AS, Prokhorov MD, Ponomarenko VI, Kiselev AR, Gridnev VI, Ruban EI, Bezruchko BP (2009) Synchronization of low-frequency oscillations in the human cardiovascular system. Chaos 19(3):033112

    Article  PubMed  CAS  Google Scholar 

  18. Kreuz T, Mormann F, Andrzejak RG, Kraskov A, Lehnertz K, Grassberger P (2007) Measuring synchronization in coupled model systems: a comparison of different approaches. Physica D Nonlinear Phenomena 225(1):29–42

    Article  Google Scholar 

  19. Kvandal P, Stefanovska A, Veber M, Kvernmo HD, Kirkeboen KA (2003) Regulation of human cutaneous circulation evaluated by laser Doppler flowmetry, iontophoresis, and spectral analysis: importance of nitric oxide and prostaglandins. Microvasc Res 65(3):160–171

    Article  PubMed  CAS  Google Scholar 

  20. Liao F, Garrison DW, Jan YK (2010) Relationship between nonlinear properties of sacral skin blood flow oscillations and vasodilatory function in people at risk for pressure ulcers. Microvasc Res 80(1):44–53

    Article  PubMed  Google Scholar 

  21. Liao F, Jan YK (2011) Using multifractal detrended fluctuation analysis to assess sacral skin blood flow oscillations in people with spinal cord injury. Journal of Rehabilitation Research and Development 48(7)

  22. Lo MT, Hu K, Liu Y, Peng CK, Novak V (2008) Multimodal pressure flow analysis: application of Hilbert H uang transform in cerebral blood flow regulation. EURASIP J Adv Signal Process 2008:785243

    Article  PubMed  Google Scholar 

  23. Minson CT, Berry LT, Joyner MJ (2001) Nitric oxide and neurally mediated regulation of skin blood flow during local heating. J Appl Physiol 91(4):1619–1626

    PubMed  CAS  Google Scholar 

  24. Minson CT, Holowatz LA, Wong BJ, Kenney WL, Wilkins BW (2002) Decreased nitric oxide- and axon reflex-mediated cutaneous vasodilation with age during local heating. J Appl Physiol 93(5):1644–1649

    PubMed  Google Scholar 

  25. Minson CT (2010) Thermal provocation to evaluate microvascular reactivity in human skin. J Appl Physiol 109(4):1239–1246

    Article  PubMed  Google Scholar 

  26. Nicotra A, Asahina M, Young TM, Mathias CJ (2006) Heat-provoked skin vasodilatation in innervated and denervated trunk dermatomes in human spinal cord injury. Spinal Cord 44(4):222–226

    Article  PubMed  CAS  Google Scholar 

  27. Oberg PA (1990) Laser-Doppler flowmetry. Crit Rev Biomed Eng 18(2):125–163

    PubMed  CAS  Google Scholar 

  28. Ocon AJ, Kulesa J, Clarke D, Taneja I, Medow MS, Stewart JM (2009) Increased phase synchronization and decreased cerebral autoregulation during fainting in the young. Am J Physiol Heart Circ Physiol 297(6):H2084–H2095

    Article  PubMed  CAS  Google Scholar 

  29. Pikovsky A, Rosenblum MG, Kurths J (2001) Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. Pradhan RK, Chakravarthy VS (2011) Informational dynamics of vasomotion in microvascular networks: a review. Acta Physiol (Oxf) 201(2):193–218

    Article  CAS  Google Scholar 

  31. Quiroga RQ, Kraskov A, Kreuz T, Grassberger P (2002) Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys Rev E 65(4):041903

    Google Scholar 

  32. Rosenblum M, Pikovsky A, Schafer C, Tass PA, Kurths J (2000) Phase synchronization: from theory to data analysis. In: Moss F, Gielen S (eds) Neuro-informatics and neural modelling. Elsevier, Amsterdam

    Google Scholar 

  33. Rosenblum MG, Pikovsky AS, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76(11):1804–1807

    Article  PubMed  CAS  Google Scholar 

  34. Rossi M, Carpi A, Galetta F, Franzoni F, Santoro G (2006) The investigation of skin blood flow motion: a new approach to study the microcirculatory impairment in vascular diseases? Biomed Pharmacother 60(8):437–442

    Article  PubMed  CAS  Google Scholar 

  35. Rossi M, Carpi A, Galetta F, Franzoni F, Santoro G (2008) Skin vasomotion investigation: a useful tool for clinical evaluation of microvascular endothelial function? Biomed Pharmacother 62(8):541–545

    Article  PubMed  CAS  Google Scholar 

  36. Rossler OE (1976) Equation for continuous chaos. Phys Lett A 57(5):397–398

    Article  Google Scholar 

  37. Schafer C, Rosenblum MG, Kurths J, Abel HH (1998) Heartbeat synchronized with ventilation. Nature 392(6673):239–240

    Article  PubMed  CAS  Google Scholar 

  38. Schreiber T, Schmitz A (2000) Surrogate time series. Physica D-Nonlinear Phenomena 142(3–4):346–382

    Article  Google Scholar 

  39. Secomb TW, Pries AR (2002) Information transfer in microvascular networks. Microcirculation 9(5):377–387

    PubMed  Google Scholar 

  40. Sheppard LW, Vuksanovic V, McClintock PV, Stefanovska A (2011) Oscillatory dynamics of vasoconstriction and vasodilation identified by time-localized phase coherence. Phys Med Biol 56(12):3583–3601

    Article  PubMed  CAS  Google Scholar 

  41. Soderstrom T, Stefanovska A, Veber M, Svensson H (2003) Involvement of sympathetic nerve activity in skin blood flow oscillations in humans. Am J Physiol Heart Circ Physiol 284(5):H1638–H1646

    PubMed  CAS  Google Scholar 

  42. Stefanovska A, Bracic M (1999) Physics of the human cardiovascular system. Contemp Phys 40(1):31–55

    Article  Google Scholar 

  43. Stefanovska A, Bracic M, Kvernmo HD (1999) Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans Biomed Eng 46(10):1230–1239

    Article  PubMed  CAS  Google Scholar 

  44. Stefanovska A, Hozic M (2000) Spatial synchronization in the human cardiovascular system. Progress Theor Phys Suppl 139:270–282

    Article  Google Scholar 

  45. Stefanovska A, Lotric MB, Strle S, Haken H (2001) The cardiovascular system as coupled oscillators? Physiol Meas 22(3):535–550

    Article  PubMed  CAS  Google Scholar 

  46. Stefanovska A (2007) Coupled oscillators. Complex but not complicated cardiovascular and brain interactions. IEEE Eng Med Biol Mag 26(6):25–29

    Article  PubMed  Google Scholar 

  47. Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A, Freund HJ (1998) Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys Rev Lett 81(15):3291–3294

    Article  CAS  Google Scholar 

  48. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Article  Google Scholar 

  49. Wu MC, Hu CK (2006) Empirical mode decomposition and synchrogram approach to cardiorespiratory synchronization. Phys Rev E 73(5):051917

    Google Scholar 

  50. Wu ZH, Huang NE (2005) Ensemble empirical mode decomposition: A noise assisted data analysis method, in Technical Report 2005, Center for Ocean–Land–Atmosphere Studies, Calverton

  51. Xu L, Chen Z, Hu K, Stanley HE, Ivanov P (2006) Spurious detection of phase synchronization in coupled nonlinear oscillators. Phys Rev E Stat Nonlin Soft Matter Phys 73(6 Pt 2):065201

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (grant R21HD065073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yih-Kuen Jan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, F., Jan, YK. Enhanced phase synchronization of blood flow oscillations between heated and adjacent non-heated sacral skin. Med Biol Eng Comput 50, 1059–1070 (2012). https://doi.org/10.1007/s11517-012-0948-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0948-y

Keywords

Navigation