Skip to main content
Log in

Scapular muscle activation and co-activation following a fatigue task

  • Special Issue - Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Scapular muscles precisely move the scapulothoracic articulation and if fatigued may contribute to pathology. Fatigue of serratus anterior may be a mechanism for shoulder pathology by altering scapula motions and requiring compensation by other shoulder muscles. A total of 28 asymptomatic subjects performed a task to fatigue the serratus anterior, while muscle activity was recorded from three muscles. Mean normalized activation levels and activation ratios were examined before and after the fatigue task during arm elevation and lowering. All muscles demonstrated meaningful declines in the median frequency of the electromyographic signal during the task. Following the task, only the upper trapezius had higher mean activation levels (mean difference 10.79% MVIC), while the serratus anterior/lower trapezius activation ratio was altered (mean difference −0.3). Higher mean upper trapezius activation may be compensatory for fatigue of other shoulder muscles and may reflect fiber type or central control mechanisms. Serratus anterior eccentric endurance training may be beneficial for the prevention of shoulder pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SA:

Serratus anterior

UT:

Upper trapezius

LT:

Lower trapezius

EMG:

Electromyography

MVIC:

Maximum voluntary isometric contraction

Hz:

Hertz

ANOVA:

Analysis of variance

References

  1. Alexander C, Miley R, Stynes S et al (2007) Differential control of the scapulothoracic muscles in humans. J Physiol 580:777–786. doi:10.1113/jphysiol.2006.126276

    Article  Google Scholar 

  2. Bigliani LU, Ticker JB, Flatow EL et al (1991) The relationship of acromial architecture to rotator cuff disease. Clin Sports Med 10(4):823–838

    Google Scholar 

  3. Borstad JD, Ludewig PM (2002) Comparison of scapular kinematics between elevation and lowering of the arm in the scapular plane. Clin Biomech (Bristol, Avon) 17:650–659. doi:10.1016/S0268-0033(02)00136-5

    Article  Google Scholar 

  4. Bowman TG, Hart JM, McGuire BA et al (2006) A functional fatiguing protocol and deceleration time of the shoulder from an internal rotation perturbation. J Athl Train 41(3):275–279

    Google Scholar 

  5. Brindle TJ, Nyland J, Shapiro R et al (1999) Shoulder proprioception: latent muscle reaction times. Med Sci Sports Exerc 31(10):1394–1398. doi:10.1097/00005768-199910000-00006

    Article  Google Scholar 

  6. Cools AM, Witvrouw EE, DeClercq GA et al (2002) Scapular muscle recruitment pattern: electromyographic response of the trapezius muscle to sudden shoulder movement before and after a fatiguing exercise. J Orthop Sports Phys Ther 32(5):221–229

    Google Scholar 

  7. Cools AM, DeClercq GA, Cambier DC et al (2007) Trapezius activity and intramuscular balance during isokinetic exercise in overhead athletes with impingement syndrome. Scand J Med Sci Sports 17:25–33. doi:10.1111/j.1600-0838.2006.00570.x

    Google Scholar 

  8. De Morais Faria CD, Teixeira-Salmela LF, a Goulart FR et al (2008) Scapular muscular activity with shoulder impingement syndrome during lowering of the arms. Clin J Sport Med 18(2):130–136. doi:10.1097/JSM.0b013e318160c05d

    Article  Google Scholar 

  9. Ebaugh DD, McClure PW, Karduna AR (2006) Effects of shoulder muscle fatigue caused by repetitive overhead activities on scapulothoracic and glenohumeral kinematics. J Electromyogr Kinesiol 16(3):224–235. doi:10.1016/j.jelekin.2005.06.015

    Article  Google Scholar 

  10. Ekstrom RA, Bifulco KM, Lopau CJ et al (2004) Comparing the function of the upper and lower parts of the serratus anterior muscle using surface electromyography. J Orthop Sports Phys Ther 34(5):235–243

    Google Scholar 

  11. Ekstrom RA, Soderberg GL, Donatelli RA (2005) Normalization procedures using maximum voluntary isometric contractions for the serratus anterior and trapezius muscles during surface EMG analysis. J Electromyogr Kinesiol 15(4):418–428. doi:10.1016/j.jelekin.2004.09.006

    Article  Google Scholar 

  12. Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol 586:11–23. doi:10.1113/jphysiol.2007.139477

    Article  Google Scholar 

  13. Escamilla RF, Barrentine SW, Fleisig GS et al (2007) Pitching biomechanics as a pitcher approaches muscular fatigue during a simulated baseball game. Am J Sports Med 35(1):23–33. doi:10.1177/0363546506293025

    Article  Google Scholar 

  14. Falla D, Farina D (2007) Periodic increases in force during sustained contraction reduce fatigue and facilitate spatial redistribution of trapezius muscle activity. Exp Brain Res 182:99–107. doi:10.1007/s00221-007-0974-4

    Article  Google Scholar 

  15. Farina D, Kallenberg LAC, Merletti R et al (2003) Effect of side dominance on myoelectric manifestations of muscle fatigue in the human upper trapezius muscle. Eur J Appl Physiol 90:480–488. doi:10.1007/s00421-003-0905-4

    Article  Google Scholar 

  16. Finley MA, Lee RY (2003) Effect of sitting posture on 3-dimensional scapular kinematics measured by skin-mounted electromagnetic tracking sensors. Arch Phys Med Rehabil 84(4):563–568. doi:10.1053/apmr.2003.50087

    Article  Google Scholar 

  17. Flatow EL, Soslowski LJ, Ticker JB et al (1994) Excursion of the rotator cuff under the acromion: patterns of subacromial contact. Am J Sports Med 22:779–788. doi:10.1177/036354659402200609

    Article  Google Scholar 

  18. Graichen H, Bonel H, Stammberger T et al (1999) Three-dimensional analysis of the width of the subacromial space in healthy subject and patients with impingement syndrome. AJR Am J Roentgenol 172:1081–1086

    Google Scholar 

  19. Greenfield B, Catlin PA, Coats PW et al (1995) Posture in patients with shoulder overuse injuries and healthy individuals. J Orthop Sports Phys Ther 21(5):287–295

    Google Scholar 

  20. Halder AM, Itoi E, An K-N (2000) Anatomy and biomechanics of the shoulder. Orthop Clin North Am 31(2):159–176. doi:10.1016/S0030-5898(05)70138-3

    Article  Google Scholar 

  21. Hebert LJ, Moffet H, McFadyen BJ et al (2002) Scapular behavior in shoulder impingement syndrome. Arch Phys Med Rehabil 83(1):60–69. doi:10.1053/apmr.2002.27471

    Article  Google Scholar 

  22. Hess SA, Richardson C, Darnell R et al (2005) Timing of rotator cuff activation during shoulder external rotation in throwers with and without symptoms of pain. J Orthop Sports Phys Ther 35(12):812–820

    Google Scholar 

  23. Hummel A, Laubli T, Pozzo M et al (2005) Relationship between perceived exertion and mean power frequency of the EMG signal from the upper trapezius muscle during isometric shoulder elevation. Eur J Appl Physiol 95(4):321–326. doi:10.1007/s00421-005-0014-7

    Article  Google Scholar 

  24. Hunter SK, Butler JE, Todd G et al (2006) Supraspinal fatigue does not explain the sex difference in muscle fatigue of maximal contractions. J Appl Physiol 101:1036–1044. doi:10.1152/japplphysiol.00103.2006

    Article  Google Scholar 

  25. Johnson GR, Bogduk N, Nowitzki A et al (1994) The anatomy and actions of the trapezius muscle. Clin Biomech (Bristol, Avon) 9:44–50. doi:10.1016/0268-0033(94)90057-4

    Article  Google Scholar 

  26. Kankaanpaa M, Taimela S, Webber CL Jr et al (1997) Lumbar paraspinal muscle fatigability in repetitive isoinertial loading: EMG spectral indices, Borg scale and endurance time. Eur J Appl Physiol Occup Physiol 76(3):236–242. doi:10.1007/s004210050242

    Article  Google Scholar 

  27. Lear LJ, Gross MT (1998) An electromyographical analysis of the scapular stabilizing synergists during a push-up progression. J Orthop Sports Phys Ther 28(3):146–157

    Google Scholar 

  28. Leroux JL, Codine P, Thomas E et al (1994) Isokinetic evaluation of rotational strength in normal shoulders and shoulders with impingement syndrome. Clin Orthop Relat Res 304:108–115

    Google Scholar 

  29. Lindman R, Ericsson A, Thornell L-E (1990) Fiber type composition of the human male trapezius muscle: enzyme-histochemical characteristics. Am J Anat 189:236–244. doi:10.1002/aja.1001890306

    Article  Google Scholar 

  30. Lindman R, Ericsson A, Thornell L-E (1991) Fiber type composition of the human female trapezius muscle: enzyme-histochemical characteristics. Am J Anat 190:385–392. doi:10.1002/aja.1001900406

    Article  Google Scholar 

  31. Ludewig PM, Cook TM (2000) Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther 80(3):276–291

    Google Scholar 

  32. Ludewig PM, Reynolds JF (2009) The association of scapular kinematics and glenohumeral joint pathologies. J Orthop Sports Phys Ther 39(2):90–104. doi:10.2519/jospt.2009.2808

    Google Scholar 

  33. Ludewig PM, Hoff MS, Osowski EE et al (2004) Relative balance of serratus anterior and upper trapezius muscle activity during push-up exercises. Am J Sports Med 32:484–493. doi:10.1177/0363546503258911

    Article  Google Scholar 

  34. Lukasiewicz AC, McClure P, Michener L et al (1999) Comparison of 3-dimensional scapular position and orientation between subjects with and without shoulder impingement. J Orthop Sports Phys Ther 29(10):574–583

    Google Scholar 

  35. McQuade KJ, Dawson J, Smidt GL (1998) Scapulothoracic muscle fatigue associated with alterations in scapulohumeral rhythm kinematics during maximum resistive shoulder elevation. J Orthop Sports Phys Ther 28(2):74–80

    Google Scholar 

  36. Merletti R (1999) Standards for reporting EMG data. Int Soc Electrophysiol Kinesiol 9:III–IV

    Google Scholar 

  37. Meskers CG, van der Helm FC, Rozing PM (2002) The size of the supraspinatus outlet during elevation of the arm in the frontal and sagittal plane: a 3-D model study. Clin Biomech (Bristol, Avon) 17(4):257–266. doi:10.1016/S0268-0033(02)00021-9

    Article  Google Scholar 

  38. Michener LA, McClure PW, Karduna AR (2003) Anatomical and biomechanical mechanisms of subacromial impingement syndrome. Clin Biomech (Bristol, Avon) 18:369–379. doi:10.1016/S0268-0033(03)00047-0

    Article  Google Scholar 

  39. Minning S, Eliot CA, Uhl TL et al (2007) EMG analysis of shoulder muscle fatigue during resisted isometric shoulder elevation. J Electromyogr Kinesiol 17:153–159. doi:10.1016/j.jelekin.2006.01.008

    Article  Google Scholar 

  40. Oberg T, Sandsjo L, Kadefors R (1990) Electromyogram mean power frequency in non-fatigued trapezius muscle. Eur J Appl Physiol 61:362–369. doi:10.1007/BF00236054

    Article  Google Scholar 

  41. Ogston JB, Ludewig PM (2007) Differences in 3-dimensional shoulder kinematics between persons with multidirectional instability and asymptomatic controls. Am J Sports Med 35(8):1361–1370. doi:10.1177/0363546507300820

    Article  Google Scholar 

  42. Petrofsky JS (1981) Quantification through the surface EMG of muscle fatigue and recovery during successive isometric contractions. Aviat Space Environ Med 52(9):545–550

    Google Scholar 

  43. Portney LG, Watkins MP (eds) (2000) Foundations of clinical research. Applications to practice, 2nd edn. Prentice-Hall Health, Upper Saddle River

  44. Potluri S, Lampa SJ, Norton AS et al (2006) Morphometric analysis of neuromuscular topography in the serratus anterior muscle. Muscle Nerve 33:398–408. doi:10.1002/mus.20470

    Article  Google Scholar 

  45. Soderberg GL (ed) (1992) Selected topics in surface electromyography for use in the occupational setting: expert perspectives. US Department Health Human Services, National Institute Occupational Safety Health #91-100:6-119

  46. Sood D, Nussbaum MA, Hager K (2007) Fatigue during prolonged intermittent overhead work: reliability of measures and effects of working height. Ergonoms 50:497–513. doi:10.1080/00140130601133800

    Article  Google Scholar 

  47. Su KP, Johnson MP, Gracely EJ et al (2004) Scapular rotation in swimmers with and without impingement syndrome: practice effects. Med Sci Sports Exerc 36:1117–1123. doi:10.1249/01.MSS.0000131955.55786.1A

    Article  Google Scholar 

  48. Teece RM, Lunden JB, Lloyd AS et al (2008) Three-dimensional acromioclavicular joint motions during elevation of the arm. J Orthop Sports Phys Ther 38:181–190

    Google Scholar 

  49. Tripp BL, Boswell L, Gansneder BM et al (2004) Functional fatigue decreases 3-dimensional multijoint position reproduction acuity in the overhead-throwing athlete. J Athl Train 39(4):316–320

    Google Scholar 

  50. Tsai NT, McClure PW, Karduna AR (2003) Effects of muscle fatigue on 3-dimensional scapular kinematics. Arch Phys Med Rehabil 84(7):1000–1005. doi:10.1016/S0003-9993(03)00127-8

    Article  Google Scholar 

  51. Van der Helm FC (1994) Analysis of the kinematic and dynamic behavior of the shoulder mechanism. J Biomech 27:527–550. doi:10.1016/0021-9290(94)90064-7

    Article  Google Scholar 

  52. Veeger HEJ, van der Helm FCT (2007) Shoulder function: the perfect compromise between mobility and stability. J Biomech 40:2119–2129. doi:10.1016/j.jbiomech.2006.10.016

    Article  Google Scholar 

  53. Veeger HE, van der Helm FC, Chadwick EK et al (2003) Toward standardized procedures for recording and describing 3-D shoulder movements. Behav Res Methods Instrum Comput 35(3):440–446

    Google Scholar 

  54. Wadsworth DJ, Bullock-Saxton JE (1997) Recruitment patterns of the scapular rotator muscles in freestyle swimmers with subacromial impingement. Int J Sports Med 18(8):618–624. doi:10.1055/s-2007-972692

    Article  Google Scholar 

  55. Warner JJ, Micheli LJ, Arslanian LE et al (1992) Scapulothoracic motion in normal shoulders and shoulders with glenohumeral instability and impingement syndrome: a study using Moire topographic analysis. Clin Orthop Relat Res 285:191–199

    Google Scholar 

  56. Westad C, Westgaard RH, DeLuca CJ (2003) Motor unit recruitment and derecruitment induced by brief increase in contraction amplitude of the human trapezius muscle. J Physiol 552(2):645–656. doi:10.1113/jphysiol.2003.044990

    Article  Google Scholar 

  57. Wu G, van der Helm FC, Veeger HE et al (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion. Part II: Shoulder, elbow, wrist and hand. J Biomech 38(5):981–992. doi:10.1016/j.jbiomech.2004.05.042

    Article  Google Scholar 

  58. Yoon T, Schlinder Delap B, Griffith EE et al (2007) Mechanisms of fatigue differ after low-and high-force fatiguing contractions in men and women. Muscle Nerve 36:515–524. doi:10.1002/mus.20844

    Article  Google Scholar 

  59. Zuckerman JD, Kummer FJ, Panos SN (2000) Characterization of acromial concavity: an in vitro computer analysis. Bull Hosp Jt Dis 59(2):69–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Borstad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szucs, K., Navalgund, A. & Borstad, J.D. Scapular muscle activation and co-activation following a fatigue task. Med Biol Eng Comput 47, 487–495 (2009). https://doi.org/10.1007/s11517-009-0485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0485-5

Keywords

Navigation