Skip to main content
Log in

Irreducible Virasoro modules from tensor products

  • Published:
Arkiv för Matematik

Abstract

In this paper, we obtain a class of irreducible Virasoro modules by taking tensor products of the irreducible Virasoro modules \(\Omega(\lambda,b)\) with irreducible highest weight modules \(V(\theta ,h)\) or with irreducible Virasoro modules \(\mathrm{Ind}_{\theta}(N)\) defined in Mazorchuk and Zhao (Selecta Math. (N.S.) 20:839–854, 2014). We determine the necessary and sufficient conditions for two such irreducible tensor products to be isomorphic. Then we prove that the tensor product of \(\Omega(\lambda,b)\) with a classical Whittaker module is isomorphic to the module \(\mathrm{Ind}_{\theta, \lambda}(\mathbb{C}_{\mathbf{m}})\) defined in Mazorchuk and Weisner (Proc. Amer. Math. Soc. 142:3695–3703, 2014). As a by-product we obtain the necessary and sufficient conditions for the module \(\mathrm{Ind}_{\theta, \lambda}(\mathbb{C}_{\mathbf{m}})\) to be irreducible. We also generalize the module \(\mathrm{Ind}_{\theta, \lambda}(\mathbb{C}_{\mathbf{m}})\) to \(\mathrm{Ind}_{\theta,\lambda}(\mathcal{B}^{(n)}_{\mathbf{s}})\) for any non-negative integer \(n\) and use the above results to completely determine when the modules \(\mathrm{Ind}_{\theta,\lambda}(\mathcal{B}^{(n)}_{\mathbf{s}})\) are irreducible. The submodules of \(\mathrm{Ind}_{\theta,\lambda}(\mathcal{B}^{(n)}_{\mathbf{s}})\) are studied and an open problem in Guo et al. (J. Algebra 387:68–86, 2013) is solved. Feigin–Fuchs’ Theorem on singular vectors of Verma modules over the Virasoro algebra is crucial to our proofs in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astashkevich, A., On the structure of Verma modules over Virasoro and Neveu–Schwarz algebras, Comm. Math. Phys. 186 (1997), 531–562.

    Article  MathSciNet  MATH  Google Scholar 

  2. Batra, P. and Mazorchuk, V., Blocks and modules for Whittaker pairs, J. Pure Appl. Algebra 215 (2011), 1552–1568.

    Article  MathSciNet  MATH  Google Scholar 

  3. Billig, Y., Molev, A. and Zhang, R., Differential equations in vertex algebras and simple modules for the Lie algebra of vector fields on a torus, Adv. Math. 218 (2008), 1972–2004.

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, H., Guo, X. and Zhao, K., Tensor product weight modules over the Virasoro algebra, J. Lond. Math. Soc. (2) 88 (2013), 829–844.

    Article  MathSciNet  MATH  Google Scholar 

  5. Conley, C. and Martin, C., A family of irreducible representations of Witt Lie algebra with infinite-dimensional weight spaces, Compos. Math. 128 (2001), 152–175.

    Article  MathSciNet  MATH  Google Scholar 

  6. Feigin, B. and Fuchs, D., Verma modules over a Virasoro algebra, Funktsional. Anal. i Prilozhen. 17 (1983), 91–92.

    Article  MathSciNet  MATH  Google Scholar 

  7. Di Francesco, P., Mathieu, P. and Senechal, D., Conformal Field Theory, Springer, New York, 1997.

    Book  MATH  Google Scholar 

  8. Goddard, P. and Olive, D., Kac–Moody and Virasoro algebras in relation to quantum physics, Internat. J. Modern Phys. A 1 (1986), 303–414.

    Article  MathSciNet  MATH  Google Scholar 

  9. Guo, X., Lu, R. and Zhao, K., Fraction representations and highest-weight-like representations of the Virasoro algebra, J. Algebra 387 (2013), 68–86.

    Article  MathSciNet  MATH  Google Scholar 

  10. Iohara, K. and Koga, Y., Representation Theory of the Virasoro Algebra, Springer Monographs in Mathematics, Springer, London, 2011.

    Book  MATH  Google Scholar 

  11. Inami, T., Kanno, H. and Ueno, T., Higher-dimensional WZW model on Kahler manifold and toroidal Lie algebra, Modern Phys. Lett. A 12 (1997), 2757–2764.

    Article  MathSciNet  MATH  Google Scholar 

  12. Inami, T., Kanno, H., Ueno, T. and Xiong, C.-S., Two toroidal Lie algebra as current algebra of four dimensional Kahler WZW model, Phys. Lett. B 399 (1997), 97–104.

    Article  MathSciNet  Google Scholar 

  13. Kac, V., Highest weight representations of infinite dimensional Lie algebras, in Proceedings of ICM, Helsinki, pp. 299–304, 1978.

    Google Scholar 

  14. Kac, V., Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.

    Book  MATH  Google Scholar 

  15. Kac, V. and Raina, A., Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, World Scientific, Singapore, 1987.

    MATH  Google Scholar 

  16. Lepowsky, J. and Li, H., Introduction to Vertex Operator Algebras and Their Representations, Progress in Mathematics 227, Birkhauser Boston, Boston, 2004.

    Book  MATH  Google Scholar 

  17. Lü, R., Guo, X. and Zhao, K., Irreducible modules over the Virasoro algebra, Doc. Math. 16 (2011), 709–721.

    MathSciNet  MATH  Google Scholar 

  18. Liu, G., Lü, R. and Zhao, K., A class of simple weight Virasoro modules, J. Algebra 424 (2015), 506–521.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lü, R. and Zhao, K., Irreducible Virasoro modules from irreducible Weyl modules, J. Algebra 414 (2014), 271–287.

    Article  MathSciNet  MATH  Google Scholar 

  20. Mathieu, O., Classification of Harish–Chandra modules over the Virasoro Lie algebra, Invent. Math. 107 (1992), 225–234.

    Article  MathSciNet  MATH  Google Scholar 

  21. Mazorchuk, V. and Weisner, E., Simple Virasoro modules induced from codimension one subalgebras of the positive part, Proc. Amer. Math. Soc. 142 (2014), 3695–3703.

    Article  MathSciNet  MATH  Google Scholar 

  22. Mazorchuk, V. and Zhao, K., Classification of simple weight Virasoro modules with a finite-dimensional weight space, J. Algebra 307 (2007), 209–214.

    Article  MathSciNet  MATH  Google Scholar 

  23. Mazorchuk, V. and Zhao, K., Simple Virasoro modules which are locally finite over a positive part, Selecta Math. (N.S.) 20 (2014), 839–854.

    Article  MathSciNet  MATH  Google Scholar 

  24. Moody, R. V. and Pianzola, A., Lie Algebras with Triangular Decompositions, Canad. Math. Soc., Ser. Mono. Adv. Texts, a Wiley-Interscience Publication, Wiley, New York, 1995.

    MATH  Google Scholar 

  25. Ondrus, M. and Wiesner, E., Whittaker modules for the Virasoro algebra, J. Algebra Appl. 8 (2009), 363–377.

    Article  MathSciNet  MATH  Google Scholar 

  26. Tan, H. and Zhao, K., Irreducible Virasoro modules from tensor products (II), J. Algebra 394 (2013), 357–373.

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, H., A class of representations over the Virasoro algebra, J. Algebra 190 (1997), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhao, K., Representations of the Virasoro algebra (I), J. Algebra 176 (1995), 882–907.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, H., Zhao, K. Irreducible Virasoro modules from tensor products. Ark Mat 54, 181–200 (2016). https://doi.org/10.1007/s11512-015-0222-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11512-015-0222-2

Keywords

Navigation