Skip to main content
Log in

Morrey spaces in harmonic analysis

  • Published:
Arkiv för Matematik

Abstract

Through a geometric capacitary analysis based on space dualities, this paper addresses several fundamental aspects of functional analysis and potential theory for the Morrey spaces in harmonic analysis over the Euclidean spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D. R., A note on Riesz potentials, Duke Math. J. 42 (1975), 765–778.

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, D. R., Lecture Notes on L p -Potential Theory, Dept. of Math., University of Umeå, Umeå, 1981.

  3. Adams, D. R., A note on Choquet integrals with respect to Hausdorff capacity, in Function Spaces and Applications (Lund, 1986 ), Lecture Notes in Math. 1302, pp. 115–124, Springer, Berlin–Heidelberg, 1988.

    Chapter  Google Scholar 

  4. Adams, D. R., Choquet integrals in potential theory, Publ. Mat. 42 (1998), 3–66.

    MathSciNet  MATH  Google Scholar 

  5. Adams, D. R. and Hedberg, L. I., Function Spaces and Potential Theory, Springer, Berlin, 1996.

    Google Scholar 

  6. Adams, D. R. and Xiao, J., Nonlinear analysis on Morrey spaces and their capacities, Indiana Univ. Math. J. 53 (2004), 1629–1663.

    Article  MathSciNet  MATH  Google Scholar 

  7. Alvarez, J., Continuity of Calderón–Zygmund type operators on the predual of a Morrey space, in Clifford Algebras in Analysis and Related Topics (Fayetteville, AR, 1993 ), Stud. Adv. Math. 5, pp. 309–319, CRC, Boca Raton, FL, 1996.

    Google Scholar 

  8. Anger, B., Representation of capacities, Math. Ann. 229 (1977), 245–258.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bennett, C. and Sharpley, R., Interpolation of Operators, Pure and Applied Math., 129, Academic Press, New York, 1988.

    MATH  Google Scholar 

  10. Bensoussan, A. and Frehse, J., Regularity Results for Nonlinear Elliptic Systems and Applications, Springer, Berlin, 2002.

    MATH  Google Scholar 

  11. Blasco, O., Ruiz, A. and Vega, L., Non-interpolation in Morrey–Campanato and block spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. 28 (1999), 31–40.

    MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L. A., Salsa, S. and Silvestre, L., Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), 425–461.

    Article  MathSciNet  MATH  Google Scholar 

  13. Campanato, S., Proprietá di inclusione per spazi di Morrey, Ricerche Mat. 12 (1963), 67–86.

    MathSciNet  MATH  Google Scholar 

  14. Carleson, L., Selected Problems on Exceptional Sets, Van Nostrand, Princeton, NJ, 1967.

    MATH  Google Scholar 

  15. Chiarenza, F. and Frasca, M., Morrey spaces and Hardy–Littlewood maximal function, Rend. Mat. Appl. 7 (1988), 273–279.

    MathSciNet  Google Scholar 

  16. Choquet, G., Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953–54), 131–295.

    Article  MathSciNet  Google Scholar 

  17. Duong, X., Xiao, J. and Yan, L. X., Old and new Morrey spaces with heat kernel bounds, J. Fourier Anal. Appl. 13 (2007), 87–111.

    Article  MathSciNet  MATH  Google Scholar 

  18. Heinonen, J., Kilpeläinen, T. and Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, 2nd ed., Dover, Mineola, NY, 2006.

    MATH  Google Scholar 

  19. John, F. and Nirenberg, L., On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426.

    Article  MathSciNet  MATH  Google Scholar 

  20. Fefferman, C. and Stein, E. M., H p spaces of several variables, Acta Math. 129 (1972), 137–193.

    Article  MathSciNet  MATH  Google Scholar 

  21. Fefferman, R., A theory of entropy in Fourier analysis, Adv. Math. 30 (1978), 171–201.

    Article  MathSciNet  MATH  Google Scholar 

  22. Harrell II, E. M. and Yolcu, S. Y., Eigenvalue inequalities for Klein–Gordon operators, J. Funct. Anal. 256 (2009), 3977–3995.

    Article  MathSciNet  MATH  Google Scholar 

  23. Kalita, E. A., Dual Morrey spaces, Dokl. Akad. Nauk 361 (1998), 447–449 (Russian). English transl.: Dokl. Math. 58 (1998), 85–87.

    MathSciNet  Google Scholar 

  24. Malý, J. and Ziemer, W. P., Fine Regularity of Solutions of Elliptic Partial Differential Equations, Math. Surveys and Monographs 51, Amer. Math. Soc., Providence, RI, 1997.

    MATH  Google Scholar 

  25. Maz′ya, V. G. and Verbitsky, I. E., Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator, Invent. Math. 162 (2005), 81–136.

    Article  MathSciNet  MATH  Google Scholar 

  26. Morrey, C. B., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126–166.

    Article  MathSciNet  Google Scholar 

  27. Orobitg, J. and Verdera, J., Choquet integrals, Hausdorff content and the Hardy–Littlewood maximal operator, Bull. Lond. Math. Soc. 30 (1998), 145–150.

    Article  MathSciNet  Google Scholar 

  28. Peetre, J., On the theory of \({\mathcal{L}}_{p,\lambda}\) spaces, J. Funct. Anal. 4 (1969), 71–87.

    Article  MathSciNet  MATH  Google Scholar 

  29. Ruiz, A. and Vega, L., Corrigenda to unique …, and a remark on interpolation on Morrey spaces, Publ. Mat. 39 (1995), 405–411.

    MathSciNet  MATH  Google Scholar 

  30. Sadosky, C., Interpolation of Operators and Singular Integrals, Pure and Appl. Math., Marcel Dekker, New York–Basel, 1979.

    MATH  Google Scholar 

  31. Sarason, D., Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391–405.

    Article  MathSciNet  MATH  Google Scholar 

  32. Stampacchia, G., The spaces \({\mathcal{L}}^{(p,\lambda)}\), N (p,λ) and interpolation, Ann. Sc. Norm. Super. Pisa 19 (1965), 443–462.

    MathSciNet  MATH  Google Scholar 

  33. Stein, E. M., Singular Integrals and Differentiability of Functions, Princeton Univ. Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  34. Stein, E. M., Harmonic Analysis : Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  35. Stein, E. M. and Zygmund, A., Boundedness of translation invariant operators on Hölder spaces and L p-spaces, Ann. of Math. 85 (1967), 337–349.

    Article  MathSciNet  MATH  Google Scholar 

  36. Taylor, M., Microlocal analysis on Morrey spaces, in Singularities and Oscillations (Minneapolis, MN, 1994/1995 ), IMA Vol. Math. Appl. 91, pp. 97–135, Springer, New York, 1997.

    Chapter  Google Scholar 

  37. Torchinsky, A., Real-variable Methods in Harmonic Analysis, Dover, New York, 2004.

    MATH  Google Scholar 

  38. Xiao, J., Homothetic variant of fractional Sobolev spaces with application to Navier–Stokes system, Dyn. Partial Differ. Equ. 4 (2007), 227–245.

    MathSciNet  MATH  Google Scholar 

  39. Yang, D. and Yuan, W., A note on dyadic Hausdorff capacities, Bull. Sci. Math. 132 (2008), 500–509.

    Article  MathSciNet  MATH  Google Scholar 

  40. Zorko, C. T., Morrey spaces, Proc. Amer. Math. Soc. 98 (1986), 586–592.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Adams.

Additional information

Jie Xiao was in part supported by NSERC of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, D.R., Xiao, J. Morrey spaces in harmonic analysis. Ark Mat 50, 201–230 (2012). https://doi.org/10.1007/s11512-010-0134-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11512-010-0134-0

Keywords

Navigation