Skip to main content
Log in

The arithmetic-geometric scaling spectrum for continued fractions

  • Published:
Arkiv för Matematik

Abstract

To compare continued fraction digits with the denominators of the corresponding approximants we introduce the arithmetic-geometric scaling. We will completely determine its multifractal spectrum by means of a number-theoretical free-energy function and show that the Hausdorff dimension of sets consisting of irrationals with the same scaling exponent coincides with the Legendre transform of this free-energy function. Furthermore, we identify the asymptotic of the local behaviour of the spectrum at the right boundary point and discuss a connection to the set of irrationals with continued-fraction digits exceeding a given number which tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics 470, Springer, Berlin–Heidelberg, 1975.

    MATH  Google Scholar 

  2. Cusick, T. W., Hausdorff dimension of sets of continued fractions, Q. J. Math.41 (1990), 277–286.

    MATH  MathSciNet  Google Scholar 

  3. Falconer, K., Fractal Geometry, 2nd ed., Mathematical Foundations and Applications, Wiley, Hoboken, NJ, 2003.

    MATH  Google Scholar 

  4. Fan, A.-H., Liao, L.-M., Wang, B.-W. and Wu, J., On Khintchin exponents and Lyapunov exponents of continued fractions, Ergodic Theory Dynam. Systems29 (2009), 73–109.

    Article  MATH  MathSciNet  Google Scholar 

  5. Good, I. J., The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc.37 (1941), 199–228.

    Article  MathSciNet  Google Scholar 

  6. Hensley, D., Continued fraction Cantor sets, Hausdorff dimension, and functional analysis, J. Number Theory40 (1992), 336–358.

    Article  MATH  MathSciNet  Google Scholar 

  7. Hirst, K. E., A problem in the fractional dimension theory of continued fractions, Q. J. Math.21 (1970), 29–35.

    Article  MATH  MathSciNet  Google Scholar 

  8. Hirst, K. E., Continued fractions with sequences of partial quotients, Proc. Amer. Math. Soc.38 (1973), 221–227.

    MATH  MathSciNet  Google Scholar 

  9. Jarník, V., On the metric theory of Diophantine approximations [Przyczynek do metrycznej teorji przyblizeń diofantowych], Prace Mat.-Fiz.36 (1929), 91–106 (Polish).

    Google Scholar 

  10. Kesseböhmer, M. and Stratmann, B. O., A multifractal analysis for Stern–Brocot intervals, continued fractions and Diophantine growth rates, J. Reine Angew. Math.605 (2007), 133–163.

    MATH  MathSciNet  Google Scholar 

  11. Kesseböhmer, M. and Stratmann, B. O., Homology at infinity; fractal geometry of limiting symbols for modular subgroups, Topology46 (2007), 469–491.

    Article  MATH  MathSciNet  Google Scholar 

  12. Kesseböhmer, M. and Zhu, S., Dimension sets for infinite IFSs: the Texan conjecture, J. Number Theory116 (2006), 230–246.

    MATH  MathSciNet  Google Scholar 

  13. Khinchin, A., Continued Fractions, 4th ed., Nauka, Moscow, 1978 (Russian). English transl. of 3rd. ed.: Univ. of Chicago Press, Chicago–London, 1964.

    Google Scholar 

  14. Kuzĭmin, R., Sur un problème de Gauss, C. R. Acad. Sci. URSS1928 (1928), 375–380.

    Google Scholar 

  15. Mauldin, R. D. and Urbański, M., Graph Directed Markov Systems, Cambridge Tracts in Mathematics 148, Cambridge University Press, Cambridge, 2003.

    MATH  Google Scholar 

  16. Ramharter, G., Eine Bemerkung über gewisse Nullmengen von Kettenbrüchen, Ann. Univ. Sci. Budapest. Eötvös Sect. Math.28 (1986), 11–15.

    MathSciNet  Google Scholar 

  17. Ramharter, G., On the fractional dimension theory of a class of expansions, Q. J. Math.45 (1994), 91–102.

    MATH  MathSciNet  Google Scholar 

  18. Rockafellar, R. T., Convex Analysis, Princeton Mathematical Series 28, Princeton University Press, Princeton, 1970.

    MATH  Google Scholar 

  19. Walters, P., An Introduction to Ergodic Theory, Graduate Texts in Mathematics 79, Springer, New York, 1982.

    MATH  Google Scholar 

  20. Wirsing, E., On the theorem of Gauss–Kusmin–Lévy and a Frobenius-type theorem for function spaces, Acta Arith.24 (1973/74), 507–528.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Kesseböhmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaerisch, J., Kesseböhmer, M. The arithmetic-geometric scaling spectrum for continued fractions. Ark Mat 48, 335–360 (2010). https://doi.org/10.1007/s11512-009-0102-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11512-009-0102-8

Keywords

Navigation