Skip to main content
Log in

A preferential attachment model with random initial degrees

  • Published:
Arkiv för Matematik

Abstract

In this paper, a random graph process {G(t)} t≥1 is studied and its degree sequence is analyzed. Let {W t } t≥1 be an i.i.d. sequence. The graph process is defined so that, at each integer time t, a new vertex with W t edges attached to it, is added to the graph. The new edges added at time t are then preferentially connected to older vertices, i.e., conditionally on G(t-1), the probability that a given edge of vertex t is connected to vertex i is proportional to d i (t-1)+δ, where d i (t-1) is the degree of vertex i at time t-1, independently of the other edges. The main result is that the asymptotical degree sequence for this process is a power law with exponent τ=min{τWP}, where τW is the power-law exponent of the initial degrees {W t } t≥1 and τP the exponent predicted by pure preferential attachment. This result extends previous work by Cooper and Frieze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiello, W., Chung, F. and Lu, L., Random evolution in massive graphs, in Handbook of Massive Data Sets, Massive Comput. 4, pp. 97–122, Kluwer, Dordrecht, 2002.

    Google Scholar 

  2. Barabási, A. L. and Albert, R., Emergence of scaling in random networks, Science 286 (1999), 509–512.

    Article  MathSciNet  Google Scholar 

  3. Berestycki, N. and Durrett, R., A phase transition in the random transposition random walk, Probab. Theory Related Fields 136 (2006), 203–233.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bianconi, G. and Barabási, A.-L., Bose–Einstein condensation in complex networks, Phys. Rev. Lett. 86:24 (2001), 5632–5635.

    Article  Google Scholar 

  5. Bianconi, G. and Barabási, A.-L., Competition and multiscaling in evolving networks, Europhys. Lett. 54:4 (2001), 436–442.

    Article  Google Scholar 

  6. Bollobás, B., Borgs, C., Chayes, J. and Riordan, O., Directed scale-free graphs, in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003), pp. 132–139, ACM, New York, 2003.

    Google Scholar 

  7. Bollobás, B., Janson, S. and Riordan, O., The phase transition in inhomogeneous random graphs, Random Structures Algorithms 31 (2007), 3–122.

    Article  MATH  MathSciNet  Google Scholar 

  8. Bollobás, B. and Riordan, O., Mathematical results on scale-free random graphs, in Handbook of Graphs and Networks, pp. 1–34, Wiley, Weinheim, 2003.

    Google Scholar 

  9. Bollobás, B., Riordan, O., Spencer, J. and Tusnády, G., The degree sequence of a scale-free random graph process, Random Structures Algorithms 18 (2001), 279–290.

    Article  MATH  MathSciNet  Google Scholar 

  10. Borgs, C., Chayes, J., Daskalakis, D. and Roch, C., First to market is not everything: an analysis of preferential attachment with fitness, in Proceedings of the 39th annual ACM symposium on the theory of computation, pp. 135–144, 2007.

  11. Britton, T., Deijfen, M. and Martin-Löf, A., Generating simple random graphs with prescribed degree distribution, J. Stat. Phys. 124 (2006), 1377–1397.

    Article  MATH  MathSciNet  Google Scholar 

  12. Chung, F. and Lu, L., The average distances in random graphs with given expected degrees, Proc. Natl. Acad. Sci. USA 99:25 (2002), 15879–15882.

    Article  MATH  MathSciNet  Google Scholar 

  13. Chung, F. and Lu, L., Connected components in random graphs with given expected degree sequences, Ann. Comb. 6 (2002), 125–145.

    Article  MATH  MathSciNet  Google Scholar 

  14. Cooper, C. and Frieze, A., A general model of web graphs, Random Structures Algorithms 22 (2003), 311–335.

    Article  MATH  MathSciNet  Google Scholar 

  15. Ergün, G. and Rodgers, G. J., Growing random networks with fitness, Phys. A 303 (2002), 261–272.

    Article  MATH  Google Scholar 

  16. Faloutsos, C., Faloutsos, P. and Faloutsos, M., On power-law relationships of the internet topology, Computer Communications Reviews 29 (1999), 251–262.

    Article  Google Scholar 

  17. Feller, W., An Introduction to Probability Theory and its Applications. Vol. II, Wiley, New York, 1971.

    MATH  Google Scholar 

  18. Grimmett, G. R. and Stirzaker, D. R., Probability and Random Processes, Oxford University Press, New York, 2001.

    Google Scholar 

  19. Gut, A., Probability: A Graduate Course, Springer Texts in Statistics, Springer, New York, 2005.

    MATH  Google Scholar 

  20. Hagberg, O. and Wiuf, C., Convergence properties of the degree distribution of some growing network models, Bull. Math. Biol. 68:6 (2006), 1275–1291.

    Article  MathSciNet  Google Scholar 

  21. Hall, P., Order of magnitude of moments of sums of random variables, J. London Math. Soc. 24 (1981), 562–568.

    Article  MATH  MathSciNet  Google Scholar 

  22. van der Hofstad, R. and Hooghiemstra, G., Diameters in preferential attachment models, Preprint, 2007.

  23. Jordan, J., The degree sequences and spectra of scale-free random graphs, Random Structures Algorithms 29 (2006), 226–242.

    Article  MATH  MathSciNet  Google Scholar 

  24. Katona, Z. and Móri, T. F., A new class of scale free random graphs, Statist. Probab. Lett. 76:15 (2006), 1587–1593.

    Article  MATH  MathSciNet  Google Scholar 

  25. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A. and Upfal, E., Stochastic models for the web graph, in 41st Annual Symposium on Foundations of Computer Science (Redondo Beach, CA, 2000), pp. 57–65, IEEE Comput. Soc. Press, Los Alamitos, CA, 2000.

    Chapter  Google Scholar 

  26. Kumar, R., Raghavan, P., Rajagopalan, S. and Tomkins, A., Trawling the web for emerging cyber communities, Computer Networks 31 (1999), 1481–1493.

    Article  Google Scholar 

  27. Newman, M. E. J., The structure and function of complex networks, SIAM Rev. 45 (2003), 167–256.

    Article  MATH  MathSciNet  Google Scholar 

  28. Pickands, III, J., Moment convergence of sample extremes, Ann. Math. Statist. 39 (1968), 881–889.

    Article  MATH  MathSciNet  Google Scholar 

  29. Söderberg, B., General formalism for inhomogeneous random graphs, Phys. Rev. E 66:6 (2002), 6 pp.

    Article  Google Scholar 

  30. Szymański, J., Concentration of vertex degrees in a scale-free random graph process, Random Structures Algorithms 26 (2005), 224–236.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remco van der Hofstad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deijfen, M., van den Esker, H., van der Hofstad, R. et al. A preferential attachment model with random initial degrees. Ark Mat 47, 41–72 (2009). https://doi.org/10.1007/s11512-007-0067-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11512-007-0067-4

Keywords

Navigation