Skip to main content
Log in

Geometric quantization for proper moment maps: the Vergne conjecture

  • Published:
Acta Mathematica

Abstract

We establish an analytic interpretation for the index of certain transversally elliptic symbols on non-compact manifolds. By using this interpretation, we establish a geometric quantization formula for a Hamiltonian action of a compact Lie group acting on a non-compact symplectic manifold with proper moment map. In particular, we present a solution to a conjecture of Michèle Vergne in her ICM 2006 plenary lecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M. F., Elliptic Operators and Compact Groups. Lecture Notes in Mathematics, 401. Springer, Berlin–Heidelberg, 1974.

  2. Atiyah F. M., Patodi K. V., Singer M. I.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Cambridge Philos. Soc. 77, 43–69 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bismut, J. M. & Lebeau, G., Complex immersions and Quillen metrics. Inst. Hautes Études Sci. Publ. Math., 74 (1991).

  4. Braverman M.: Index theorem for equivariant Dirac operators on noncompact manifolds. K-Theory 27, 61–101 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bunke U.: On the gluing problem for the η-invariant. J. Differential Geom. 41, 397–448 (1995)

    MATH  MathSciNet  Google Scholar 

  6. Gilkey P. B.: On the index of geometrical operators for Riemannian manifolds with boundary. Adv. Math., 102, 129–183 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Guillemin V., Sternberg S.: Geometric quantization and multiplicities of group representations. Invent. Math. 67, 515–538 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kostant, B., Quantization and unitary representations, in Lectures in Modern Analysis and Applications, III, Lecture Notes in Mathematics, 170, pp. 87–208. Springer, Berlin– Heidelberg, 1970.

  9. Lawson, Jr., H. B. & Michelsohn, M.-L., Spin Geometry. Princeton Mathematical Series, 38. Princeton University Press, Princeton, NJ, 1989.

  10. Ma, X., Geometric quantization on Kähler and symplectic manifolds, in Proceedings of the International Congress of Mathematicians. Vol. II, pp. 785–810. Hindustan Book Agency, New Delhi, 2010.

  11. Ma, X. & Marinescu, G., Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, 254. Birkhäuser, Basel, 2007.

  12. Ma, X. & Zhang, W., Geometric quantization for proper moment maps: the Vergne conjecture. Preprint, 2008. arXiv:0812.3989 [math.DG].

  13. Ma X., Zhang W.: Geometric quantization for proper moment maps. C. R. Math. Acad. Sci. Paris 347, 389–394 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ma, X. & Zhang, W., Transversal index and L 2-index for manifolds with boundary, in Metric and Differential Geometry, Progress in Mathematics, 297, pp. 299–316. Birkhäuser, Boston, MA, 2012.

  15. Meinrenken E.: On Riemann–Roch formulas for multiplicities. J. Amer. Math. Soc. 9, 373–389 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Meinrenken E.: Symplectic surgery and the Spinc-Dirac operator. Adv. Math. 134, 240–277 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Meinrenken E., Sjamaar R.: Singular reduction and quantization. Topology 38, 699–762 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Paradan P.-É: Localization of the Riemann–Roch character. J. Funct. Anal., 187, 442–509 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Paradan P.-É: Spinc-quantization and the K-multiplicities of the discrete series. Ann. Sci. École Norm. Sup. 36, 805–845 (2003)

    MATH  MathSciNet  Google Scholar 

  20. Paradan, P.-É, Multiplicities of the discrete series. Preprint, 2008. arXiv:0812.0059 [math.RT].

  21. Paradan P.-É: Formal geometric quantization. Ann. Inst. Fourier (Grenoble) 59, 199–238 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tian Y., Zhang W.: An analytic proof of the geometric quantization conjecture of Guillemin–Sternberg. Invent. Math. 132, 229–259 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tian Y., Zhang W.: Quantization formula for symplectic manifolds with boundary. Geom. Funct. Anal. 9, 596–640 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Vergne, M., Multiplicities formula for geometric quantization. I, II. Duke Math. J., 82 (1996), 143–179, 181–194.

  25. Vergne, M., Quantification géométrique et réduction symplectique, in Séminaire Bourbaki 2000/01. Astérisque, 282 (2002), Exp. No. 888, viii, 249–278.

  26. Vergne, M., Applications of equivariant cohomology, in International Congress of Mathematicians. Vol. I, pp. 635–664. Eur. Math. Soc., Zürich, 2007.

  27. Weitsman J.: Non-abelian symplectic cuts and the geometric quantization of noncompact manifolds. Lett. Math. Phys. 56, 31–40 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaonan Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, X., Zhang, W. Geometric quantization for proper moment maps: the Vergne conjecture. Acta Math 212, 11–57 (2014). https://doi.org/10.1007/s11511-014-0108-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-014-0108-3

Navigation