Skip to main content
Log in

On divisors of Lucas and Lehmer numbers

  • Published:
Acta Mathematica

Abstract

Let u n be the nth term of a Lucas sequence or a Lehmer sequence. In this article we shall establish an estimate from below for the greatest prime factor of u n which is of the form n exp(log n/104 log log n). In doing so, we are able to resolve a question of Schinzel from 1962 and a conjecture of Erdős from 1965. In addition we are able to give the first general improvement on results of Bang from 1886 and Carmichael from 1912.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M. & Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, 55. U.S. Government Printing Office, Washington, DC, 1972.

  2. Baker A.: A sharpening of the bounds for linear forms in logarithms. Acta Arith., 21, 117–129 (1972)

    MATH  MathSciNet  Google Scholar 

  3. Baker, A. & Stark, H. M., On a fundamental inequality in number theory. Ann. of Math., 94(1971), 190–199.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bang, A. S., Taltheoretiske undersøgelser. Tidsskrift for Mat., 4 (1886), 70–80, 130–137.

  5. Bilu, Y., Hanrot, G. & Voutier, P. M., Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math., 539 (2001), 75–122.

    Google Scholar 

  6. Birkhoff, G. D. & Vandiver, H. S., On the integral divisors of a nb n. Ann. of Math., 5 (1904), 173–180.

  7. Bugeaud, Y. & Laurent, M., Minoration effective de la distance p-adique entre puissances de nombres alg’ebriques. J. Number Theory, 61 (1996), 311–342.

    Google Scholar 

  8. Carmichael, R. D., On the numerical factors of the arithmetic forms \({\alpha^n\pm\beta^n}\) . Ann. of Math., 15 (1913/14), 30–70.

  9. Cohn, H., A Classical Invitation to Algebraic Numbers and Class Fields. Springer, New York, 1978.

  10. Cohn, H., Introduction to the Construction of Class Fields. Cambridge Studies in Advanced Mathematics, 6. Cambridge University Press, Cambridge, 1985.

  11. Dickson, L. E., History of the Theory of Numbers. Vol. I: Divisibility and Primality. Chelsea, New York, 1966.

  12. Dobrowolski, E., On a question of Lehmer and the number of irreducible factors of a polynomial. Acta Arith., 34(1979), 391–401.

    MATH  MathSciNet  Google Scholar 

  13. Durst, L. K., Exceptional real Lehmer sequences. Pacific J. Math., 9(1959), 437–441.

    Article  MATH  MathSciNet  Google Scholar 

  14. Erdős, P., Some recent advances and current problems in number theory, in Lectures on Modern Mathematics, Vol. III, pp. 196–244. Wiley, New York, 1965.

  15. Erdős, P. & Shorey, T. N., On the greatest prime factor of 2P−1 for a prime p and other expressions. Acta Arith., 30 (1976), 257–265.

    Google Scholar 

  16. Fröhlich, A. & Taylor, M. J., Algebraic Number Theory. Cambridge Studies in Advanced Mathematics, 27. Cambridge University Press, Cambridge, 1993.

  17. Gel′fond, A. O., Transcendental and Algebraic Numbers. Dover, New York, 1960.

    Google Scholar 

  18. Halberstam, H. & Richert, H. E., Sieve Methods. London Mathematical Society Monographs, 4. Academic Press, London–New York, 1974.

  19. Hardy, G. H. & Wright, E. M., An Introduction to the Theory of Numbers. Oxford University Press, Oxford, 2008.

    MATH  Google Scholar 

  20. Hecke, E., Lectures on the Theory of Algebraic Numbers. Graduate Texts in Mathematics, 77. Springer, New York, 1981.

  21. Juricevic, R., Lehmer Numbers with at least 2 Primitive Divisors. Ph.D. Thesis, University of Waterloo, Waterloo, ON, 2008.

  22. Lagarias, J. C. & Odlyzko, A. M., Effective versions of the Chebotarev density theorem, in Algebraic Number Fields : L-functions and Galois Properties(Durham, 1975), pp. 409–464. Academic Press, London, 1977.

  23. Lehmer, D. H., An extended theory of Lucas’ functions. Ann. of Math., 31 (1930), 419–448.

    Google Scholar 

  24. Lucas, E., Sur les rapports qui existent entre la théorie des nombres et le calcul intégral. C. R. Acad. Sci. Paris, 82 (1876), 1303–1305.

  25. Lucas, E., Théorie des fonctions numériques simplement périodiques. Amer. J. Math., 1 (1878), 184–240.

  26. Matijasevich, Yu. V., The Diophantineness of enumerable sets. Dokl. Akad. Nauk SSSR, 191 (1970), 279–282 (Russian); English translation in Soviet Math. Dokl., 11 (1970), 354–358.

  27. Murata, L. & Pomerance, C., On the largest prime factor of a Mersenne number, in Number Theory, CRM Proc. Lecture Notes, 36, pp. 209–218. Amer. Math. Soc., Providence, RI, 2004.

  28. Murty, R. & Wong, S., The ABC conjecture and prime divisors of the Lucas and Lehmer sequences, in Number Theory for the Millennium, III (Urbana, IL, 2000), pp. 43–54. A K Peters, Natick, MA, 2002.

  29. Rotkiewicz, A., On Lucas numbers with two intrinsic prime divisors. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 10 (1962), 229–232.

    Google Scholar 

  30. Schinzel, A., The intrinsic divisors of Lehmer numbers in the case of negative discriminant. Ark. Mat., 4 (1962), 413–416.

    Article  MATH  MathSciNet  Google Scholar 

  31. Schinzel, A., On primitive prime factors of a nb n. Proc. Cambridge Philos. Soc., 58 (1962), 555–562.

    MATH  MathSciNet  Google Scholar 

  32. Schinzel, A., On primitive prime factors of Lehmer numbers. I. Acta Arith., 8 (1962/1963), 213–223.

    Google Scholar 

  33. Schinzel, A., On primitive prime factors of Lehmer numbers. II. Acta Arith., 8 (1962/1963), 251–257.

  34. Schinzel, A., On primitive prime factors of Lehmer numbers. III. Acta Arith., 15 (1968), 49–70.

    Google Scholar 

  35. Schinzel, A., Primitive divisors of the expression A nB n in algebraic number fields. J. Reine Angew. Math., 268/269 (1974), 27–33.

    Google Scholar 

  36. Shorey, T. N. & Stewart, C. L., On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers. II. J. London Math. Soc., 23 (1981), 17–23.

    Google Scholar 

  37. Stewart, C. L., The greatest prime factor of a nb n. Acta Arith., 26 (1974/75), 427–433.

  38. Stewart, C. L., On divisors of Fermat, Fibonacci, Lucas, and Lehmer numbers. Proc. London Math. Soc., 35 (1977), 425–447.

    Article  MATH  MathSciNet  Google Scholar 

  39. Stewart, C. L., Primitive divisors of Lucas and Lehmer numbers, in Transcendence Theory : Advances and Applications (Cambridge, 1976), pp. 79–92. Academic Press, London, 1977.

  40. Stewart, C. L., On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers. III. J. London Math. Soc., 28 (1983), 211–217.

    Google Scholar 

  41. Stewart, C. L. & Yu, K., On the abc conjecture. II. Duke Math. J., 108 (2001), 169–181.

  42. Voutier, P. M., An effective lower bound for the height of algebraic numbers. Acta Arith., 74 (1996), 81–95.

    MathSciNet  Google Scholar 

  43. Voutier, P. M. Primitive divisors of Lucas and Lehmer sequences. II. J. Théor. Nombres Bordeaux, 8 (1996), 251–274.

    Google Scholar 

  44. Voutier, P. M. Primitive divisors of Lucas and Lehmer sequences. III. Math. Proc. Cambridge Philos. Soc., 123 (1998), 407–419.

  45. Ward, M., The intrinsic divisors of Lehmer numbers. Ann. of Math., 62 (1955), 230–236.

    Article  MATH  MathSciNet  Google Scholar 

  46. Yamada, T., A note on the paper by Bugeaud and Laurent “Minoration effective de la distance p-adique entre puissances de nombres algébriques”. J. Number Theory, 130 (2010), 1889–1897.

    Google Scholar 

  47. Yu, K., p-adic logarithmic forms and group varieties. III. Forum Math., 19 (2007), 187–280.

  48. Yu, K., p-adic logarithmic forms and a problem of Erdős. Acta Math., 211 (2013), 315–382.

    Google Scholar 

  49. Zsigmondy K.: Zur Theorie der Potenzreste. Monatsh. Math. Phys., 3, 265–284 (1892)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cameron L. Stewart.

Additional information

Research supported in part by the Canada Research Chairs Program and by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, C.L. On divisors of Lucas and Lehmer numbers. Acta Math 211, 291–314 (2013). https://doi.org/10.1007/s11511-013-0105-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-013-0105-y

Keywords

Navigation