Skip to main content
Log in

A geometric approach to generalized Stokes conjectures

  • Published:
Acta Mathematica

Abstract

We consider the Stokes conjecture concerning the shape of extreme 2-dimensional water waves. By new geometric methods including a non-linear frequency formula, we prove the Stokes conjecture in the original variables. Our results do not rely on structural assumptions needed in previous results such as isolated singularities, symmetry and monotonicity. Part of our results extends to the mathematical problem in higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren, F. J. Jr., Almgren’s Big Regularity Paper. World Scientific Monograph Series in Mathematics, 1. World Scientific, River Edge, NJ, 2000.

  2. 2 Alt, H. W. & Caffarelli, L. A., Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math., 325 (1981), 105–144.

    MATH  MathSciNet  Google Scholar 

  3. 3 Amick, C. J., Fraenkel, L. E. & Toland, J. F., On the Stokes conjecture for the wave of extreme form. Acta Math., 148 (1982), 193–214.

    Article  MATH  MathSciNet  Google Scholar 

  4. 4 Amick, C. J. & Toland, J. F., On solitary water-waves of finite amplitude. Arch. Ration. Mech. Anal., 76 (1981), 9–95.

    Article  MATH  MathSciNet  Google Scholar 

  5. Andersson, J. & Weiss, G. S., A parabolic free boundary problem with Bernoulli type condition on the free boundary. J. Reine Angew. Math., 627 (2009), 213–235.

    Article  MATH  MathSciNet  Google Scholar 

  6. Caffarelli, L. A. & Vázquez, J. L., A free-boundary problem for the heat equation arising in flame propagation. Trans. Amer. Math. Soc., 347 (1995), 411–441.

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, B. & Saffman, P. G., Numerical evidence for the existence of new types of gravity waves of permanent form on deep water. Stud. Appl. Math., 62 (1980), 1–21.

    MATH  MathSciNet  Google Scholar 

  8. Constantin, A. & Strauss, W., Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math., 57 (2004), 481–527.

    Article  MATH  MathSciNet  Google Scholar 

  9. — Rotational steady water waves near stagnation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), 2227–2239.

    Article  MATH  MathSciNet  Google Scholar 

  10. Constantin, A. & Varvaruca, E., Steady periodic water waves with constant vorticity: regularity and local bifurcation. Arch. Ration. Mech. Anal., 199 (2011), 33–67.

    Article  MathSciNet  Google Scholar 

  11. Evans, L. C., Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS Regional Conference Series in Mathematics, 74. Amer. Math. Soc., Providence, RI, 1990.

  12. 12 Evans, L. C. & Müller, S., Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity. J. Amer. Math. Soc., 7 (1994), 199–219.

    Article  MATH  MathSciNet  Google Scholar 

  13. Garabedian, P. R., A remark about pointed bubbles. Comm. Pure Appl. Math., 38 (1985), 609–612.

    Article  MATH  MathSciNet  Google Scholar 

  14. Garofalo, N. & Petrosyan, A., Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem. Invent. Math., 177 (2009), 415–461.

    Article  MATH  MathSciNet  Google Scholar 

  15. GiustiE., Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, 80 Birkhäuser, Basel, 1984.

  16. Keady, G. & Norbury, J., On the existence theory for irrotational water waves. Math. Proc. Cambridge Philos. Soc., 83 (1978), 137–157.

    Article  MATH  MathSciNet  Google Scholar 

  17. 18 Krasovskiĭ, Yu. P., On the theory of steady-state waves of finite amplitude. Zh. Vychisl. Mat. i Mat. Fiz., 1 (1961), 836–855 (Russian). English translation in U.S.S.R. Comput. Math. and Math. Phys., 1 (1961), 996–1018.

  18. McLeod, J. B., The Stokes and Krasovskii conjectures for the wave of greatest height. Stud. Appl. Math., 98 (1997), 311–333.

    Article  MATH  MathSciNet  Google Scholar 

  19. Pacard, F., Partial regularity for weak solutions of a nonlinear elliptic equation. Manuscripta Math., 79 (1993), 161–172.

    Article  MATH  MathSciNet  Google Scholar 

  20. Plotnikov, P. I., Justification of the Stokes conjecture in the theory of surface waves. Dinamika Sploshn. Sredy, 57 (1982), 41–76 (Russian). English traslation in Stud. Appl. Math., 108 (2002), 217–244.

  21. Plotnikov, P. I. & Toland, J. F., Convexity of Stokes waves of extreme form. Arch. Ration. Mech. Anal., 171 (2004), 349–416.

    Article  MATH  MathSciNet  Google Scholar 

  22. Price, P., A monotonicity formula for Yang–Mills fields. Manuscripta Math., 43 (1983), 131–166.

    Article  MATH  MathSciNet  Google Scholar 

  23. Savin, O. & Varvaruca, E., Existence of steady free-surface waves with corners of 120° at their crests in the presence of vorticity. In preparation.

  24. Schoen, R. M., Analytic aspects of the harmonic map problem, in Seminar on Nonlinear Partial Differential Equations (Berkeley, CA, 1983), Math. Sci. Res. Inst. Publ., 2, pp. 321–358. Springer, New York, 1984.

  25. Shargorodsky, E. & Toland, J. F., Bernoulli free-boundary problems. Mem. Amer. Math. Soc., 196:914 (2008).

    MathSciNet  Google Scholar 

  26. Spielvogel, E. R., A variational principle for waves of infinite depth. Arch. Ration. Mech. Anal., 39 (1970), 189–205.

    Article  MATH  MathSciNet  Google Scholar 

  27. Stokes, G. G., Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form, in Mathematical and Physical Papers, Vol. I, pp. 225–228. Cambridge University Press, Cambridge, 1880.

  28. Toland, J. F., On the existence of a wave of greatest height and Stokes’s conjecture. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 363 (1978), 469–485.

    Article  MATH  MathSciNet  Google Scholar 

  29. Vanden-Broeck, J.-M., Some new gravity waves in water of finite depth. Phys. Fluids, 26 (1983), 2385–2387.

    Article  MATH  MathSciNet  Google Scholar 

  30. Varvaruca, E., Singularities of Bernoulli free boundaries. Comm. Partial Differential Equations, 31 (2006), 1451–1477.

    Article  MATH  MathSciNet  Google Scholar 

  31. — Bernoulli free-boundary problems in strip-like domains and a property of permanent waves on water of finite depth. Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 1345–1362.

    Article  MATH  MathSciNet  Google Scholar 

  32. — On the existence of extreme waves and the Stokes conjecture with vorticity. J. Differential Equations, 246 (2009), 4043–4076.

    Article  MATH  MathSciNet  Google Scholar 

  33. Varvaruca, E. & Weiss, G. S., The Stokes conjecture for waves with vorticity. In preparation.

  34. Wahlén, E., Steady water waves with a critical layer. J. Differential Equations, 246 (2009), 2468–2483.

    Article  MATH  MathSciNet  Google Scholar 

  35. Weiss, G. S., Partial regularity for weak solutions of an elliptic free boundary problem. Comm. Partial Differential Equations, 23 (1998), 439–455.

    Article  MATH  MathSciNet  Google Scholar 

  36. — Partial regularity for a minimum problem with free boundary. J. Geom. Anal., 9 (1999), 317–326.

  37. — A singular limit arising in combustion theory: fine properties of the free boundary. Calc. Var. Partial Differential Equations, 17 (2003), 311–340.

    MATH  MathSciNet  Google Scholar 

  38. — Some new nonlinear frequency formulas and applications. In preparation.

  39. Weiss, G. S. & Zhang, G., A free boundary approach to two-dimensional steady capillary gravity water waves. Submitted.

  40. Wu, S., Almost global wellposedness of the 2-D full water wave problem. Invent. Math., 177 (2009), 45–135.

    Article  MATH  MathSciNet  Google Scholar 

  41. Zufiria, J. A., Nonsymmetric gravity waves on water of infinite depth. J. Fluid Mech., 181 (1987), 17–39.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg S. Weiss.

Additional information

Dedicated to John Toland on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varvaruca, E., Weiss, G.S. A geometric approach to generalized Stokes conjectures. Acta Math 206, 363–403 (2011). https://doi.org/10.1007/s11511-011-0066-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-011-0066-y

2000 Math. Subj. Classification

Keywords

Navigation