Skip to main content
Log in

Dependence of the critical heat flux at boiling on the coolant physical properties

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

It has been experimentally proved that heat transfer at boiling appears to be the problem with the conjugated boundary conditions. Heat transfer and critical heat fluxes at boiling depend both on physical properties of the boiling liquid and on the number of characteristics of the heat transferring wall.

Various experimental data of the problem of boiling liquid with various physical properties have been analysed. To eliminate or minimize influence of the properties of the cooled wall on the value of critical heat transfer, the data obtained at boiling on the thick cooled wall only from the stainless steel or nichrome are considered. To eliminate effect of capillary forces specific linear size of heat transferring wall satisfied the condition \( \bar D \) ≥ 2.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.O. Adamov and Yu.N. Kuznetsov, Nuclear power: overall strategy and contribution to district heating, in: Proc. Baltic Heat Transfer Conf. 19–21 September 2007, Publ. House of Polytech. Univ., St. Petersburg, 2007, Vol. 1, P. 10–17.

    Google Scholar 

  2. A.A. Sulatski, O.D. Cherny, V.K. Efimov, and V.S. Granovsky, Boiling crisis at the outer surface of VVER Vessel, in: Proc. Int. Symp. on the Physics of Heat Transfer in Boiling and Condensation and 11–th Int. School-Seminar of Young Scientists and Specialists, 21–24 May 1997, Moscow, Russia, Publ. House “Shanse”, Moscow, 1997, P. 263–268.

    Google Scholar 

  3. V.I. Deev, K.V. Kutsenko, A.A. Lavrukhin, and V.S. Kharitonov, Unsteady crisis of liquid boiling, in: V Minsk Int. Forum on Heat and Mass Transfer, 24–28 May, 2004, Minsk, 2004, Lykov Inst. of Heat and Mass Transfer NASB, Vol. 2, Minsk, 2004, P. 36–37.

  4. A. Bergles, Enhancement of boiling heat transfer, in: Proc. Baltic Heat Transfer Conf., 19-21 September, 2007, Publ. House of Polytech. Univ., St. Petersburg, 2007, Vol. 1, P. 73–95.

    Google Scholar 

  5. V.A. Grigoriev, Yu.M. Pavlov, and E.V. Ametistov, Boiling of Cryogenic Liquids, Energiya, Moscow, 1977.

  6. O. Dwyer, Boiling Liquid Metal Heat Transfer, Amer. Nucl. Soc., 1976.

  7. H.J. Van Ouverkerk, Burnout in pool boiling the stability of boiling mechanisms, Int. J. Heat Mass Transfer, 1972, Vol. 15, P. 25–28.

    Article  Google Scholar 

  8. K.R. Efferson, Heat transfer from cylindrical surfaces to liquid helium, Int. J. Appl. Phys., 1969, Vol. 40, No. 5, P. 1995–2000.

    Article  ADS  Google Scholar 

  9. S. Ishigai and T. Kuno, Experimental study of transition boiling on a vertical wall open vessel, Bull. JSME, 1966, Vol. 9, No. 5, P. 361–368.

    Google Scholar 

  10. V.V. Yagov, The mechanism of the pool boiling crisis, Therm. Engng., 2003, Vol. 50, No. 3, P. 175–183.

    Google Scholar 

  11. S.S. Kutateladze, Hydrodynamical model of heat transfer crisis in boiling liquid at free convection, Sov. Phys. — J. Tech. Phys., 1950, Vol. 20, No. 11, P. 1389–1392.

    Google Scholar 

  12. S.S. Kutateladze, Hydrodynamical theory of boiling mode change at free convection, Izv. AN SSSR, Dpt. of Tech. Sci., 1951, No. 4, P. 529–536.

  13. N. Zuber, Hydrodynamic aspects of boiling heat transfer, AEC Rep., AECU-4439, Los Angeles, 1959, P. 1–20.

  14. D.A. Labuntsov, Generalized dependences for critical thermal loading for liquid boiling at the conditions of free motion, Therm. Engng., 1960, Vol. 7, P. 76–80.

    Google Scholar 

  15. P.J. Berenson, Experiments on pool boiling heat transfer, I. J. Heat Mass Transfer, 1962, Vol. 5, P. 985–999.

    Article  Google Scholar 

  16. V.V. Klimenko, Study of transient and film boiling of cryogenic liquids, Abstr. of PhD Thesis, MPEI, Moscow, 1975, P. 1–30.

  17. W. Nusselt, Die Oberflächen Kondensationubes Wasserdampfes, Z. der VD., 1916, Teil 1, No. 27, S. 541.

  18. W. Nusselt, Die Oberflächen Kondensationubes Wasserdampfes, Z. der VD., 1916, Teil 2, No. 28, S. 569.

  19. G.I. Bobrovich, I.I. Gogonin, S.S. Kutateladze, and V.N. Moskvicheva, Critical thermal fluxes at binary mixtures boiling, J. Appl. Mech. Tech. Phys., 1962, Vol. 3, No. 4, P. 108–111.

    Google Scholar 

  20. G.I. Bobrovich, I.I. Gogonin, and S.S. Kutateladze, Impact of the heat surface dimensions on critical thermal flux at boiling in the large liquid volume, J. Appl. Mech. and Tech. Phys., 1964, Vol. 5, No. 4, P. 137–138.

    Google Scholar 

  21. S.S. Kutateladze, N.V. Valukina, and I.I. Gogonin, Relationship between critical heat flux and heater diameter in the boiling of a saturated liquid in free-convection conditions, J. Engng. Phys., 1967, Vol. 12, No. 5, P. 301–305.

    Article  Google Scholar 

  22. I.I. Gogonin, Heat transfer and critical fluxes at boiling of Freon-21 under the conditions of free convection, Refrigeration Engng, 1970, No. 3, P. 24–28.

  23. J.C. Hoehne and D.A. Huber, Pool boiling of benzene, biphenyl and benzene-diphenyl mixtures under pressure, Trans. ASME. Ser. C., 1963, Vol. 85, No. 3, P. 31–38.

    Google Scholar 

  24. J.H. Leanhard, V.K. Dhir, and D.M. Riherd, Peak pool boiling heat flux measurements on finite horizontal flat plates, Trans ASME. Ser C., 1973, No. 4, P. 49–56.

  25. G.V. Ratiani and D.I. Avaliani, Heat transfer and critical thermal loads at Freon boiling, Refrigeration Engng., 1965, No. 3, P. 23–27.

  26. Yu. A. Kirichenko, S.M. Kozlov, and N.M. Levchenko, Experimental study of the crisis of hydrogen and nitrogen boiling, in: Issues of Hydrodynamics and Heat Transfer in Cryogenic Systems, PTI AS USSR, Kharkov, 1974, Iss. 4, P. 62–66.

    Google Scholar 

  27. F. Tachibana, M. Akyama, and H. Kawamura, Non-hydrodynamic aspects of pool boiling burnout, J. Nucl. Sci. Technol., 1967, Vol. 4, No. 3, P. 121–130.

    Article  Google Scholar 

  28. M. Carne, Some effects of test section geometry in saturated pool boiling on the critical heat flax for some organic liquids and liquid mixtures, Chem. Engng. Prog. Symp. Series, 1965, Vol. 61, No. 59, P. 281–289.

    Google Scholar 

  29. V.K. Andreev, V.I. Deev, and V.I. Petrovichev, Effect of heat surface orientation and pressure on critical heat flux at pool boiling of helium, High Temperatures, Dpt. No. 858-76, AISTI, Moscow, 1976, P. 1–13.

    Google Scholar 

  30. I.I. Gogonin and S.S. Kutateladze, Critical heat flux as a function of heater size for a liquid boiling in a large endosure, J. Engng. Phys., 1977, Vol. 33, No. 5, P. 1286–1289.

    Article  Google Scholar 

  31. A.S. Dudkevich and F.D. Akhmedov, Experimental study of thermophysical properties of heat surface at nitrogen boiling at high pressures, Heat and Mass Exchange and Apparatuses, MPEI Moscow, Papers, 1974, Iss. 198, P. 41–47.

  32. A.V. Klimenko, Experimental and theoretical study of some factors affecting heat transfer at boiling of cryogenic liquids, Abstr. of PhD Thesis, MPEI Moscow, 1975.

  33. V.G. Morozov, Study of bubble boiling cessation on the submerged surface, Papers of CBTI “Boiler and Tube Development”, CBTI, Leningrad, 1965, Iss. 58, P. 64–77.

    Google Scholar 

  34. V.A. Grigoriev, V.V. Klimenko, Yu.M. Pavlov, and E.V. Ametistov, To the theory of pool bubble boiling crisis, Therm. Engng., 1978, Vol. 25, No. 2, P. 7–9.

    Google Scholar 

  35. V.M. Borishansky, On the criterial formula for generalization of experimental data on pool bubble boiling, Sov. Phys.—Tech. Phys., 1956, Vol. 26,Iss. 2, P. 452–456.

    Google Scholar 

  36. N.B. Vargaftik, Tables of the Thermophysical Properties of Liquids and Gases, Halsted Press, New York, 1973.

    Google Scholar 

  37. B.N. Maximov, V.G. Barabanov, I.P. Serushkin et al., Industrial Organofluoric Products, Reference Edition, Chemistry, Leningrad, 1990.

  38. B.I. Verkin, Yu.A. Kirichenko, and K.V. Rusanov, Heat Transfer at Boiling of Cryogenic Liquids, Naukova Dumka, Kiev, 1987.

    Google Scholar 

  39. Handbook on Heat Exchangers, Energoatomizdat, Moscow, 1987, Vol. 2.

  40. L.A. Novitskiy and I.G. Kozhevnikov, Thermophysical Properties of Materials at Low Temperatures, Handbook, Mashinostroenie, Moscow, 1975.

    Google Scholar 

  41. Book of Steels and Alloys Grades, Ed. By A.S. Zubchenko, Moscow, Mashinostroenie, 2003.

    Google Scholar 

  42. Handbook on Physical and Technical Bases of Cryogenics, M.P. Malkov (Ed.), Energiya, Moscow, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Gogonin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogonin, I.I. Dependence of the critical heat flux at boiling on the coolant physical properties. Thermophys. Aeromech. 16, 111–118 (2009). https://doi.org/10.1007/s11510-009-0011-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11510-009-0011-0

Key words

Navigation