Skip to main content
Log in

Characterization, Release Profile and Antimicrobial Properties of Bioactive Polyvinyl Alcohol-Alyssum homolocarpum Seed Gum- Nisin Composite Film

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

A common goal of active packaging is to improve the shelf life, safety, or quality of packaged foods. The integrity of an active package must be remained in order to prevent the growth of microorganisms on the surface of food. Therefore, active polyvinyl alcohol-Alyssum homolocarpum seed gum (PVA-AHSG) composite films with different nisin concentrations (3000, 5000 and 10,000 IU) were prepared and their physico-chemical and antimicrobial properties were determined. Addition of nisin to the composite films increased their water vapor permeability (WVP), elongation at break (EB) and opacity, whereas their total color difference (ΔE), glass transition temperature (Tg), melting temperature (Tm), tensile strength (TS) and young modulus (YM) were decreased. Increasing the nisin concentration remarkably increased the chain mobility, interactions between polymers and water molecules and also the free volume of polymer matrix. The antimicrobial potential of film against L. monocytogene, S. aureus and E. coli as well as the release of nisin into phosphate buffer solution (pH 7.2) were investigated. Films containing nisin had inhibition effect against gram positive pathogens among which L. monocytogenes was the most sensitive bacterium. In liquid media, all films containing nisin prevented the growth of L. monocytogenes and S. aureus, but it was only the film with 10,000 IU nisin content which was able to control 100% of the microbial population during incubation time. Nisin release and diffusion coefficient (D) increased as its concentration increased in the film matrix due to the interaction of nisin with film polymer chains. Therefore, the resultant film had appropriate controlled release property and suitable microbial inhibitory against gram positive bacteria.

Composite bioactive films based on polyvinyl alcohol-Alyssum homolocarpum seed gum blend and Nisin: Physiochemical characterization and antimicrobial properties. Monjazeb et al. (2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Gram, L. Ravn, M. Rasch, J.B. Bruhn, A.B. Christensen, M. Givskov, Int. J. Food Microbiol. 78(1), 79–97 (2002)

    Article  Google Scholar 

  2. K. Sanjurjo, S. Flores, L. Gerschenson, R. Jagus, Food Res. Int. 39(6), 749–754 (2006)

    Article  CAS  Google Scholar 

  3. L. M. Were, B. Bruce, P. M. Davidson and J. Weiss, Journal of Food Protection® 67 (5), 922–927 (2004)

  4. A. Gennadios, M.A. Hanna, L.B. Kurth, LWT-Food Science and Technology 30(4), 337–350 (1997)

    Article  CAS  Google Scholar 

  5. S.-Y. Sung, L.T. Sin, T.-T. Tee, et al., Trends Food Sci. Technol. 33(2), 110–123 (2013)

    Article  CAS  Google Scholar 

  6. L. Vermeiren, F. Devlieghere, M. Van Beest, N. De Kruijf, J. Debevere, Trends Food Sci. Technol. 10(3), 77–86 (1999)

    Article  CAS  Google Scholar 

  7. J. Delves-broughton, Food Australia 57(12), 525–527 (2005)

    CAS  Google Scholar 

  8. K. Hoffman, I. Han, P. Dawson, J. Food Prot. 64(6), 885–889 (2001)

    Article  CAS  Google Scholar 

  9. J. Chacko, (2008)

  10. M.A. Hesarinejad, S.M. Razavi, A. Koocheki, Int. J. Biol. Macromol. 81, 418–426 (2015)

    Article  CAS  Google Scholar 

  11. A. Koocheki, R. Kadkhodaee, S.A. Mortazavi, F. Shahidi, A.R. Taherian, Food Hydrocoll. 23(8), 2416–2424 (2009)

    Article  CAS  Google Scholar 

  12. A. Koocheki, S.A. Mortazavi, F. Shahidi, S. Razavi, R. Kadkhodaee, J.M. Milani, J. Food Process Eng. 33(5), 861–882 (2010)

    Google Scholar 

  13. A. Koocheki, S.A. Mortazavi, F. Shahidi, S.M.A. Razavi, A. Taherian, J. Food Eng. 91(3), 490–496 (2009)

    Article  CAS  Google Scholar 

  14. M. L. Monjazeb, M. Yavarmanesh and A. Koocheki, (2017)

  15. L.M. Marvdashti, A. Koocheki, M. Yavarmanesh, Carbohydr. Polym. 155, 280–293 (2017)

    Article  Google Scholar 

  16. L. Monjazeb Marvdashti, M. Yavarmanesh, A. Koocheki, Iranian food science and technology research. Journal 12(5), 663–677 (2016)

    Google Scholar 

  17. C.Y. Basch, R.J. Jagus, S.K. Flores, Food Bioprocess Technol. 6(9), 2419–2428 (2013)

    Article  CAS  Google Scholar 

  18. W. Guiga, Y. Swesi, S. Galland, E. Peyrol, P. Degraeve, I. Sebti, Innovative Food Sci. Emerg. Technol. 11(2), 352–360 (2010)

    Article  CAS  Google Scholar 

  19. H. Wang, H. Liu, C. Chu, Y. She, S. Jiang, L. Zhai, S. Jiang, X. Li, Food Bioprocess Technol. 8(8), 1657–1667 (2015)

    Article  CAS  Google Scholar 

  20. N. Gontard and S. Guilbert, In Food packaging and preservation (Springer, 1994), pp. 159–181

  21. S.M. Ojagh, M. Rezaei, S.H. Razavi, S.M.H. Hosseini, Food Chem. 122(1), 161–166 (2010)

    Article  CAS  Google Scholar 

  22. D. ASTM, Standard Test Method for Tensile Properties of Thin Plastic Sheeting (2002)

  23. A.C. Ripoche, E. Chollet, E. Peyrol, I. Sebti, Innovative Food Sci. Emerg. Technol. 7(1), 107–111 (2006)

    Article  Google Scholar 

  24. J. Crank, N. Y. 19752, 1–21 (1975)

    Google Scholar 

  25. ASTM, Standard Test M Ethod for Determ Ining the Antim Icrobial Activity ofIm M Obilized Antim Icrobial AgentsU Nder Dynam Ic Contact Conditions (2001)

  26. S. Ko, M. Janes, N. Hettiarachchy, M. Johnson, J. Food Sci. 66(7), 1006–1011 (2001)

    Article  CAS  Google Scholar 

  27. I. Sebti, E. Chollet, P. Degraeve, C. Noel, E. Peyrol, J. Agric. Food Chem. 55(3), 693–699 (2007)

    Article  CAS  Google Scholar 

  28. D. Dehnad, Z. Emam-Djomeh, H. Mirzaei, S.-M. Jafari, S. Dadashi, Carbohydr. Polym. 105, 222–228 (2014)

    Article  CAS  Google Scholar 

  29. S. Flores, L. Gerschenson, R. Jagus, K. Sanjurjo, Focus in food engineering. Series Food Science and Technology, 69–99 (2010)

  30. M.M. Murillo-Martínez, S.R. Tello-Solís, M.A. García-Sánchez, E. Ponce-Alquicira, J. Food Sci. 78(4), M560–M566 (2013)

    Article  Google Scholar 

  31. X. Xu, B. Li, J. Kennedy, B. Xie, M. Huang, Carbohydr. Polym. 70(2), 192–197 (2007)

    Article  CAS  Google Scholar 

  32. M. Bernela, P. Kaur, M. Chopra, R. Thakur, LWT-Food Science and Technology 59(2), 1093–1099 (2014)

    Article  CAS  Google Scholar 

  33. C. Ibarguren, P.M. Naranjo, C. Stötzel, M.C. Audisio, E.L. Sham, E.M. Farfán Torres, F.A. Müller, Appl. Clay Sci. 90, 88–95 (2014)

    Article  CAS  Google Scholar 

  34. J. Kong, S. Yu, Acta Biochim. Biophys. Sin. 39(8), 549–559 (2007)

    Article  CAS  Google Scholar 

  35. M. Zohri, M.S. Alavidjeh, I. Haririan, M.S. Ardestani, S.E.S. Ebrahimi, H.T. Sani, S.K. Sadjadi, Probiotics and Antimicrobial proteins 2(4), 258–266 (2010)

    Article  CAS  Google Scholar 

  36. A. Khan, S.P. Salmieri, C. Fraschini, J. Bouchard, B. Riedl, M. Lacroix, ACS Appl. Mater. Interfaces 6(17), 15232–15242 (2014)

    Article  CAS  Google Scholar 

  37. I. Sebti, J. Delves-Broughton, V. Coma, J. Agric. Food Chem. 51(22), 6468–6474 (2003)

    Article  CAS  Google Scholar 

  38. L.E. Abugoch, C. Tapia, M.C. Villamán, M. Yazdani-Pedram, M. Díaz-Dosque, Food Hydrocoll. 25(5), 879–886 (2011)

    Article  CAS  Google Scholar 

  39. A.L. Storia, D. Ercolini, F. Marinello, G. Mauriello, J. Food Sci. 73(4), T48–T54 (2008)

    Article  Google Scholar 

  40. S.M.M. Meira, G. Zehetmeyer, A.I. Jardim, J.M. Scheibel, R.V.B. de Oliveira, A. Brandelli, Food Bioprocess Technol. 7(11), 3349–3357 (2014)

    Article  CAS  Google Scholar 

  41. M. Pereda, A. Ponce, N. Marcovich, R. Ruseckaite, J. Martucci, Food Hydrocoll. 25(5), 1372–1381 (2011)

    Article  CAS  Google Scholar 

  42. M. Rao, S. Kanatt, S. Chawla, A. Sharma, Carbohydr. Polym. 82(4), 1243–1247 (2010)

    Article  CAS  Google Scholar 

  43. Q. Sun, C. Sun, L. Xiong, Carbohydr. Polym. 98(1), 630–637 (2013)

    Article  CAS  Google Scholar 

  44. D. Muscat, R. Adhikari, S. McKnight, Q. Guo, B. Adhikari, J. Food Eng. 119(2), 205–219 (2013)

    Article  CAS  Google Scholar 

  45. C.-H. Tang, Y. Jiang, Food Res. Int. 40(4), 504–509 (2007)

    Article  CAS  Google Scholar 

  46. A. Teerakarn, D. Hirt, J. Acton, J. Rieck, P. Dawson, J. Food Sci. 67(8), 3019–3025 (2002)

    Article  CAS  Google Scholar 

  47. C.P.O. Resa, R.J. Jagus, L.N. Gerschenson, Mater. Sci. Eng. C 40, 281–287 (2014)

    Article  Google Scholar 

  48. E. Kristo, K.P. Koutsoumanis, C.G. Biliaderis, Food Hydrocoll. 22(3), 373–386 (2008)

    Article  CAS  Google Scholar 

  49. G. Freddi, M. Romano, M. Massafra, M. Tsukada, J. Appl. Polym. Sci. 56(12), 1537–1545 (1995)

    Article  CAS  Google Scholar 

  50. S. Park, C. Rhee, D. Bae, N. Hettiarachchy, J. Agric. Food Chem. 49(5), 2308–2312 (2001)

    Article  CAS  Google Scholar 

  51. J. Olivato, M. Grossmann, A. Bilck, F. Yamashita, Carbohydr. Polym. 90(1), 159–164 (2012)

    Article  CAS  Google Scholar 

  52. N. Cao, X. Yang, Y. Fu, Food Hydrocoll. 23(3), 729–735 (2009)

    Article  CAS  Google Scholar 

  53. U. Siripatrawan, W. Vitchayakitti, Food Hydrocoll. 61, 695–702 (2016)

    Article  CAS  Google Scholar 

  54. D. Dehnad, H. Mirzaei, Z. Emam-Djomeh, S.-M. Jafari, S. Dadashi, Carbohydr. Polym. 109, 148–154 (2014)

    Article  CAS  Google Scholar 

  55. S.G. Shiroodi, S. Nesaei, M. Ovissipour, H.M. Al-Qadiri, B. Rasco, S. Sablani, Food Bioprocess Technol. 9(6), 958–969 (2016)

    Article  CAS  Google Scholar 

  56. L. Bastarrachea, S. Dhawan, S.S. Sablani, J. Powers, J. Food Eng. 100(1), 93–101 (2010)

    Article  CAS  Google Scholar 

  57. Y.M. Kim, D.S. An, H.J. Park, J.M. Park, D.S. Lee, Packag. Technol. Sci. 15(5), 247–254 (2002)

    Article  CAS  Google Scholar 

  58. L. Bastarrachea, S. Dhawan, S.S. Sablani, J.H. Mah, D.H. Kang, J. Zhang, J. Tang, J. Food Sci. 75(4), E215–E224 (2010)

    Article  CAS  Google Scholar 

  59. M. Imran, A. Klouj, A.-M. Revol-Junelles, S. Desobry, J. Food Eng. 143, 178–185 (2014)

    Article  CAS  Google Scholar 

  60. I. Sebti, D. Blanc, A. Carnet-Ripoche, R. Saurel, V. Coma, J. Food Eng. 63(2), 185–190 (2004)

    Article  Google Scholar 

  61. B. Li, J. Kennedy, J. Peng, X. Yie, B. Xie, Carbohydr. Polym. 65(4), 488–494 (2006)

    Article  CAS  Google Scholar 

  62. Y. Pranoto, S. Rakshit, V. Salokhe, LWT-Food Science and Technology 38(8), 859–865 (2005)

    Article  CAS  Google Scholar 

  63. M. Imran, S. El-Fahmy, A.-M. Revol-Junelles, S. Desobry, Carbohydr. Polym. 81(2), 219–225 (2010)

    Article  CAS  Google Scholar 

  64. B. Li, J. Peng, X. Yie, B. Xie, J. Food Sci. 71(3), C174–C178 (2006)

    Article  CAS  Google Scholar 

  65. L. Cao-Hoang, L. Grégoire, A. Chaine, Y. Waché, Food Control 21(9), 1227–1233 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Food Science and Technology, Ferdowsi University of Mashhad for financial support of this work. Funding: This work was supported by Ferdowsi University of Mashhad [33275, 2015].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Koocheki.

Ethics declarations

Conflict of Interest

It is declared that there is no conflict of interest in publication of this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• All nisin concentrations could inhibit the growth of L. innocua in vitro.

• Films prepared with 10000 IU nisin were the most effective against L. innocua.

• Temperature and concentration of nisin affected antimicrobial diffusion in the films.

• The release rate of nisin could be retarded by controlling release temperature.

• The nisin concentration had significant effect on kinetics of its release.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monjazeb Marvdashti, L., Koocheki, A. & Yavarmanesh, M. Characterization, Release Profile and Antimicrobial Properties of Bioactive Polyvinyl Alcohol-Alyssum homolocarpum Seed Gum- Nisin Composite Film. Food Biophysics 14, 120–131 (2019). https://doi.org/10.1007/s11483-018-09562-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-018-09562-y

Keywords

Navigation