Skip to main content
Log in

Kinetics of in Vitro Bread Bolus Digestion with Varying Oral and Gastric Digestion Parameters

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The rate of bolus disintegration in the stomach plays an important role in gastric emptying, which has been shown to be directly correlated with post-food consumption blood glucose levels and satiety. This study examined the effect of various oral and gastric factors on bread bolus disintegration, including flour type, hydrodynamic forces, saliva level, and presence of α-amylase. The kinetics of bolus disintegration were determined by measuring the mass retention of boluses and fitting their disintegration profiles to a linear-exponential model. Artificially masticated bread was mixed with simulated saliva to form a bolus, which was soaked in simulated gastric juice for 120 min. The mass retention kinetics during static and agitated soaking followed three distinct profiles: exponential, sigmoidal, and delayed sigmoidal. The differences in profiles were attributed to varying levels of water absorption, caused by variations in bread structure and moisture content. Increasing the bolus saliva level decreased cohesive forces and increased bolus disintegration rate. These changes could have been caused by the increase of water inside the food matrix, or by the softening effect of α-amylase, which was shown to have a significant effect on bolus texture and also caused an increase in bolus disintegration. This work studies the driving factors in the breakdown of different types of bread during simulated gastric digestion. Our results demonstrate that bread structure and moisture content are key features controlling the rate of bread breakdown during gastric digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.F. Prinz, P.W. Lucas, Arch. Oral Biol. 40(5), 401–403 (1995)

    Article  CAS  Google Scholar 

  2. M.-L. Jalabert-Malbos, A. Mishellany-Dutour, A. Woda, M.-A. Peyron, Food Qual. Prefer. 18(5), 803–812 (2007)

    Article  Google Scholar 

  3. A.M. Siddiqui, A. Provost, W.H. Schwarz, Rheol. Acta 30(3), 249–262 (1991)

    Article  CAS  Google Scholar 

  4. F. Kong, R.P. Singh, J. Food Sci. 73(5), R67–R80 (2008)

    Article  CAS  Google Scholar 

  5. F. Kong, R.P. Singh, J. Food Sci. 73(5), E202–E210 (2008)

    Article  CAS  Google Scholar 

  6. L. Marciani, P.A. Gowland, R.C. Spiller et al., Am. J. Physiol. Gastrointest. Liver Physiol. 280(6), G1227–G1233 (2001)

    CAS  Google Scholar 

  7. B.K. Patel, R.D. Waniska, K. Seetharaman, J. Cereal Sci. 42(2), 173–184 (2005)

    Article  CAS  Google Scholar 

  8. C. Hoebler, M.F. Devaux, A. Karinthi, C. Belleville, J.L. Barry, Int. J. Food Sci. Nutr. 51, 353–366 (2000)

    Article  CAS  Google Scholar 

  9. K. Hiiemae, M.R. Heath, G. Heath et al., Arch. Oral Biol. 41(2), 175–189 (1996)

    Article  CAS  Google Scholar 

  10. M.B.D. Gavião, L. Engelen, A. van der Bilt, Eur. J. Oral Sci. 112(1), 19–24 (2004)

    Article  Google Scholar 

  11. M.B.D. Gavião, A. van der Bilt, J. Appl. Oral Sci. 12, 159–163 (2004)

    Article  Google Scholar 

  12. C. Yven, J. Culioli, L. Mioche, Meat Sci. 70(2), 365–371 (2005)

    Article  Google Scholar 

  13. C. Hoebler, A. Karinthi, M.-F. Devaux et al., Br. J. Nutr. 80(05), 429–436 (1998)

    Article  CAS  Google Scholar 

  14. L. Mioche, P. Bourdiol, S. Monier, Arch. Oral Biol. 48(3), 193–200 (2003)

    Article  Google Scholar 

  15. L. Mioche, P. Bourdiol, S. Monier, J.-F. Martin, Food Qual. Prefer. 13(7–8), 583–588 (2002)

    Article  Google Scholar 

  16. J.H. Meyer, Am. J. Physiol. Gastrointest. Liver Physiol. 239(3), G133–G135 (1980)

    CAS  Google Scholar 

  17. F. Kong, R. Singh, Food Biophys. 4(3), 180–190 (2009)

    Article  Google Scholar 

  18. O. Goetze, D. Menne, M.A. Kwiatek, Neurogastroenterol. Motil. 17(Supplement 2), 29 (2005)

    Google Scholar 

  19. C. Dawes, J. Physiol. 220(3), 529–545 (1972)

    CAS  Google Scholar 

  20. C. Dawes, S. Watanabe, J. Dent. Res. 66(3), 740–744 (1987)

    Article  CAS  Google Scholar 

  21. E.M. Ghezzi, L.A. Lange, J.A. Ship, J. Dent. Res. 79(11), 1874–1878 (2000)

    Article  CAS  Google Scholar 

  22. P.L. Catellani, P. Predella, A. Bellotti, P. Colombo, Int. J. Pharm. 51(1), 63–66 (1989)

    Article  CAS  Google Scholar 

  23. E.-S. Park, M. Maniar, J. Shah, J. Control. Release 40(1–2), 111–121 (1996)

    Article  CAS  Google Scholar 

  24. A.A. McConnell, M.A. Eastwood, W.D. Mitchell, J, Sci. Food Agric. 25(12), 1457–1464 (1974)

    Article  CAS  Google Scholar 

  25. J.F. Prinz, P.W. Lucas, Proc. R. Soc. Lond. B 264, 1715–1721 (1997)

    Article  CAS  Google Scholar 

  26. A. Pedersen, A. Bardow, S. Beier Jensen, B. Nauntofte, Oral Dis. 8(3), 117–129 (2002)

    Article  CAS  Google Scholar 

  27. G. M. Bornhorst, M.S. Thesis. University of California, Davis, 2010.

Download references

Acknowledgments

This research was supported by USDA-NRI, contract 2009-35503-05195. We thank Annie Wang for her assistance in performing various experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Paul Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bornhorst, G.M., Singh, R.P. Kinetics of in Vitro Bread Bolus Digestion with Varying Oral and Gastric Digestion Parameters. Food Biophysics 8, 50–59 (2013). https://doi.org/10.1007/s11483-013-9283-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-013-9283-6

Keywords

Navigation