Skip to main content
Log in

Impact of Encapsulation Within Hydrogel Microspheres on Lipid Digestion: An In Vitro Study

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The objective of this study was to determine the influence of encapsulation of protein-coated lipid droplets within biopolymer hydrogel microspheres on their digestibility by lipase. We therefore compared the in vitro lipid digestion of non-encapsulated (“emulsions”) and encapsulated (“filled microspheres”) casein-coated lipid droplets. Filled microspheres were fabricated from a phase separated mixture of pectin and sodium caseinate and emulsified oil to form an oil-in-water-in-water (O/W/W) emulsion. The microspheres were then acidified, cross-linked with transglutaminase, and washed to remove excess pectin. Filled hydrogel microspheres were stable to simulated mouth conditions but formed large flocs under simulated gastric conditions. The casein stabilized emulsion showed modest droplet flocculation under simulated mouth conditions and showed significant flocculation and coalescence under simulated gastric conditions. The structure of both microspheres and emulsions was completely destroyed following in vitro digestion. Digestion profiles revealed similar rates of lipid digestion for both microspheres and emulsions. Since in vitro digestion conditions simulate the small intestine, the region of the body where the majority of lipid digestion and absorption occurs, these results suggest that lipid droplets encapsulated within microspheres would be digested similarly to those in conventional emulsions. Based on these findings, filled hydrogel microspheres appear to be a suitable delivery system for lipophilic bioactives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Heurtault, P. Saulnier, B. Pech, J. Proust, J. Benoit, Biomaterials 24, 4283 (2003)

    Article  CAS  Google Scholar 

  2. S.R.B.M. Eussen, H. Verhagen, O.H. Klungel, J. Garssen, H. van Loveren, H.J. van Kranen, C.J.M. Rompelberg, Eur. J. Pharmacol. 668(Supplement 1), S2 (2011)

    Article  CAS  Google Scholar 

  3. C.J. Henry, Eur. J. Clin. Nutr. 64, 657 (2010)

    Article  CAS  Google Scholar 

  4. D.J. McClements, E.A. Decker, Y. Park, J. Weiss, Crit. Rev. Food Sci. Nutr. 49, 577 (2009)

    Article  CAS  Google Scholar 

  5. P. de Vos, M.M. Faas, M. Spasojevic, J. Sikkema, Int. Dairy J. 20, 292 (2010)

    Article  Google Scholar 

  6. D.J. McClements, E.A. Decker, J. Weiss, J. Food Sci. 72, R109 (2007)

    Article  CAS  Google Scholar 

  7. D.J. McClements, Annu. Rev. Food Sci. Technol. 1, 241 (2010)

    Article  CAS  Google Scholar 

  8. L. Sagalowicz, M.E. Leser, Curr. Opin. Colloid Interface Sci. 15, 61 (2010)

    Article  CAS  Google Scholar 

  9. A. Matalanis, U. Lesmes, E.A. Decker, D.J. McClements, Food Hydrocoll. 24, 689 (2010)

    Article  CAS  Google Scholar 

  10. C. H. M. Versantvoort, E. v. d. Kamp, and C. J. M. Rompelberg, Development and applicability of an in vitro digestion model in assessing the bioaccessibility of contaminants from food. (Rijksinstituut voor Volksgezondheid en Milieu, 2004) http://hdl.handle.net/10029/8885. Accessed 14 November 2011.

  11. D.J. McClements, E.A. Decker, Y. Park, Crit. Rev. Food Sci. Nutr. 49, 48 (2008)

    Article  Google Scholar 

  12. D.J. McClements, Y. Li, Adv. Colloid Interface Sci. 159, 213 (2010)

    Article  CAS  Google Scholar 

  13. M.M. Bradford, Anal. Biochem. 72, 248 (1976)

    Article  CAS  Google Scholar 

  14. M. DuBois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Anal. Chem. 28, 350 (1956)

    Article  CAS  Google Scholar 

  15. S. Iverson, S. Lang, M. Cooper, Lipids 36, 1283 (2001)

    Article  CAS  Google Scholar 

  16. A. Sarkar, K.K.T. Goh, H. Singh, Food Hydrocoll. 23, 1270 (2009)

    Article  CAS  Google Scholar 

  17. M. Hu, Y. Li, E.A. Decker, D.J. McClements, Food Hydrocoll. 24, 719 (2010)

    Article  CAS  Google Scholar 

  18. D.J. McClements, Food emulsions: principles, practice, and techniques (CRC, Boca Raton, 2005), p. 14

    Google Scholar 

  19. E. Dickinson, J. Dairy Sci. 80, 2607 (1997)

    Article  CAS  Google Scholar 

  20. M. David Julian, Curr. Opin. Colloid Interface Sci. 9, 305 (2004)

    Article  Google Scholar 

  21. J. Surh, E.A. Decker, D.J. McClements, Food Hydrocoll. 20, 607 (2006)

    Article  CAS  Google Scholar 

  22. M.H. Vingerhoeds, T.B.J. Blijdenstein, F.D. Zoet, G.A. van Aken, Food Hydrocoll. 19, 915 (2005)

    Article  CAS  Google Scholar 

  23. R. Bansil, B.S. Turner, Curr. Opin. Colloid Interface Sci. 11, 164 (2006)

    Article  CAS  Google Scholar 

  24. E. Dickinson, Food Hydrocoll. 17, 25 (2003)

    Article  CAS  Google Scholar 

  25. E. Silletti, M.H. Vingerhoeds, W. Norde, G.A. van Aken, Food Hydrocoll. 21, 596 (2007)

    Article  CAS  Google Scholar 

  26. A. Sarkar, K.K.T. Goh, R.P. Singh, H. Singh, Food Hydrocoll. 23, 1563 (2009)

    Article  CAS  Google Scholar 

  27. A. Macierzanka, A.I. Sancho, E.N.C. Mills, N.M. Rigby, A.R. Mackie, Soft Matter 5, 538 (2009)

    Article  CAS  Google Scholar 

  28. M. Golding, T.J. Wooster, L. Day, M. Xu, L. Lundin, J. Keogh, P. Clifton, Soft Matter 7, 3513 (2011)

    Article  CAS  Google Scholar 

  29. M. Golding, T.J. Wooster, Curr. Opin. Colloid Interface Sci. 15, 90 (2010)

    Article  CAS  Google Scholar 

  30. S.J. Hur, E.A. Decker, D.J. McClements, Food Chem. 114, 253 (2009)

    Article  CAS  Google Scholar 

  31. S. Sandra, E.A. Decker, D.J. McClements, J. Agric. Food Chem. 56, 7488 (2008)

    Article  CAS  Google Scholar 

  32. Y. Li, D.J. McClements, Food Hydrocoll. 25, 1025 (2011)

    Article  CAS  Google Scholar 

  33. A. Dahan, A. Hoffman, Pharm. Res. 23, 2165 (2006)

    Article  CAS  Google Scholar 

  34. Y. Li, D.J. McClements, J. Agric. Food Chem. 58, 8085 (2010)

    Article  CAS  Google Scholar 

  35. L. Marciani, M. Wickham, G. Singh, D. Bush, B. Pick, E. Cox, A. Fillery-Travis, R. Faulks, C. Marsden, P.A. Gowland, am. J. Physiol.-Gastrointest. Liver Physiol. 292, G1607 (2007)

    Article  CAS  Google Scholar 

  36. L. Marciani, R. Faulks, M.S.J. Wickham, D. Bush, B. Pick, J. Wright, E.F. Cox, A. Fillery-Travis, P.A. Gowland, R.C. Spiller, Br. J. Nutr. 101, 919 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the United States Department of Agriculture, CREES, NRI Grants. We also acknowledge funding from the University of Massachusetts (CVIP and Hatch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Julian McClements.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matalanis, A., McClements, D.J. Impact of Encapsulation Within Hydrogel Microspheres on Lipid Digestion: An In Vitro Study. Food Biophysics 7, 145–154 (2012). https://doi.org/10.1007/s11483-012-9252-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-012-9252-5

Keywords

Navigation