Skip to main content
Log in

Photophysical Probes of the Amorphous Solid State of Proteins

  • SPECIAL ISSUE ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The properties of amorphous solid proteins influence the texture and stability of low-moisture foods, the shelf-life of pharmaceuticals, and the viability of seeds and spores. We have investigated the relationship between molecular mobility and oxygen permeability in dry food protein films—bovine α-lactalbumin (α-La), bovine β-lactoblobulin (β-Lg), bovine serum albumin (BSA), soy 11S globulin, and porcine gelatin—using phosphorescence from the triplet probe erythrosin B. Measurements of the phosphorescence decay in the absence (nitrogen) and presence (air) of oxygen versus temperature provide estimates of the non-radiative decay rate for matrix-induced quenching (k TS0) and oxygen quenching (k Q[O2]) of the triplet state. Since the oxygen quenching constant is the product of the oxygen solubility ([O2]) and a term (k Q) proportional to the oxygen diffusion coefficient, it is a measure of the oxygen permeability through the films. For all proteins except gelatin, Arrhenius plots of k TS0 reveal a gradual increase of apparent activation energy across a broad temperature range starting at ∼50 °C; this suggests that there is a steady increase in the available modes of molecular motion with increasing temperature within the protein matrix. Arrhenius plots for k Q[O2] were linear for all proteins with activation energies ranging from 24 to 29 kJ/mol. The magnitude of the oxygen quenching constants varied in the different proteins; the rates were approximately 10-fold higher in α-La, β-Lg, and BSA than in 11S glycinin and gelatin. Although the rate of oxygen permeability was not directly affected by the increased mobility of the protein matrix, plots of k Q[O2] versus k TS0 were linear over nearly three orders of magnitude in the protein films, suggesting that the matrix mobility plays a specific role in modulating oxygen permeability. This effect may reflect differences in matrix-free volume that directly influence both mobility and oxygen solubility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Slade, H. Levine, J.W. Finley, in Protein quality and the effects of processing, ed. by R.D. Phillips, J.W. Finley (Marcel Dekker, Inc, New York, 1989)

    Google Scholar 

  2. J.J. Hill, E.Y. Shalaev, G. Zografi, J. Pharm. Sci. 94, 1636 (2005)

    Article  CAS  Google Scholar 

  3. J. Buitink, O. Leprince, Cryobiology 48, 215 (2004)

    Article  CAS  Google Scholar 

  4. L. Slade, H. Levine, Adv. Exp. Med. Biol. 302, 29 (1991)

    CAS  Google Scholar 

  5. Y. Roos, Phase transitions in food (Academic Press, Inc, San Diego, 1995)

    Google Scholar 

  6. D. Reid, O. Fennema, in Fennema’s food chemistry, ed. by K.L. Damodaran, Parkin, O.R. Fenema, 4th edn. (CRC Press, Boca Raton, 2008)

    Google Scholar 

  7. R. Zallen, The physics of amorphous solids (Wiley, New York, 1983)

    Book  Google Scholar 

  8. I.V. Sochava, O.I. Smirnova, Food Hydrocolloids 6, 513 (1993)

    Article  CAS  Google Scholar 

  9. L.H. Sperling, Introduction to physical polymer science (Wiley, New York, 1992)

    Google Scholar 

  10. F. Horii, Mod. magn. reson. 1, 604 (2006)

    Google Scholar 

  11. A.E. Aliev, R.V. Law, Nucl. magn. reson. 23, 32 (2003)

    Google Scholar 

  12. Y.G. Vainer, J. Lumin. 125, 1 (2007)

    Article  Google Scholar 

  13. K.D. Jandt, Mat. Sci. Eng. R: Reports R21, 221 (1998)

    Article  CAS  Google Scholar 

  14. W. Paul, G.D. Smith, Rep. Prog. Phys. 67, 1117 (2004)

    Article  CAS  Google Scholar 

  15. D. Champion, M. Le Meste, D. Simatos, Tr. Food Sci. Tech. 11, 41 (2000)

    Article  CAS  Google Scholar 

  16. M.C. Lai, E.M. Topp, J. Pharm. Sci. 88, 489 (1999)

    Article  CAS  Google Scholar 

  17. S. Yoshioka, Y. Aso, J. Pharm. Sci. 96, 960 (2007)

    Article  CAS  Google Scholar 

  18. O. Fennema, in Food chemistry, ed. by O. Fennema, 3rd edn. (Marcel Dekker, Inc, New York, 1996)

    Google Scholar 

  19. R.D. Ludescher, N.K. Shah, C.P. McCaul, K.V. Simon, Food Hydrocolloids 15, 331 (2001)

    Article  CAS  Google Scholar 

  20. M. Christoff, T.D.Z. Atvars, Macromolecules 32, 6093 (1999)

    Article  CAS  Google Scholar 

  21. Y. You, R.D. Ludescher, Appl. Spectrosc. 60, 813 (2006)

    Article  CAS  Google Scholar 

  22. K.V. Simon-Lukasik, R.D. Ludescher, Food Hydrocolloids 18, 621 (2004)

    Article  CAS  Google Scholar 

  23. K.V. Sundaresan, R.D. Ludescher, Food Hydrocolloids 22, 403 (2008)

    Article  CAS  Google Scholar 

  24. S. Papp, J.M. Vanderkooi, Photochem. Photobiol. 49, 775 (1989)

    Article  CAS  Google Scholar 

  25. C.J. Fischer, A. Gafni, D.G. Steel, J.A. Schauerte, J. Am. Chem. Soc. 124, 10359 (2002)

    Article  CAS  Google Scholar 

  26. L.C. Pravinata, Y. You, R.D. Ludescher, Biophys. J. 88, 3551 (2005)

    Article  CAS  Google Scholar 

  27. E.I. Hormats, F.C. Unterleitner, Polym. Prepr. 5, 22 (1964)

    CAS  Google Scholar 

  28. E.I. Hormats, F.C. Unterleitner, J. Phys. Chem. 69, 3677 (1965)

    Article  CAS  Google Scholar 

  29. G.B. Strambini, E. Gabellieri, Photochem. Photobiol. 39, 725 (1984)

    CAS  Google Scholar 

  30. N.K. Shah, R.D. Ludescher, Photochem. Photobiol. 58, 169 (1993)

    Article  CAS  Google Scholar 

  31. T. Nack, Ph.D. dissertation, Rutgers University New Brunswick, 2008

  32. S. Shirke, R.D. Ludescher, Carbohydr. Res. 340, 2654 (2005)

    Article  CAS  Google Scholar 

  33. S. Shirke, P. Takhistov, R.D. Ludescher, J. Phys. Chem. B 109, 16119 (2005)

    Article  CAS  Google Scholar 

  34. T.J. Nack, R.D. Ludescher, Food Biophys. 1, 151 (2006)

    Article  Google Scholar 

  35. K.V. Lukasik, R.D. Ludescher, Food Hydrocolloids 20, 96 (2006)

    Article  CAS  Google Scholar 

  36. K.V. Lukasik, R.D. Ludescher, Food Hydrocolloids 20, 88 (2006)

    Article  CAS  Google Scholar 

  37. Y. You, R.D. Ludescher, Carb. Res. 343, 2657 (2008)

    Article  CAS  Google Scholar 

  38. Y. You, R.D. Ludescher, Carb. Res. 343, 2641 (2008)

    Article  CAS  Google Scholar 

  39. Y. You, R.D. Ludescher, Carb. Res. 343, 350 (2008)

    Article  CAS  Google Scholar 

  40. Y. You, R.D. Ludescher, J. Agr. Food Chem. 57, 709 (2009)

    Article  CAS  Google Scholar 

  41. R. Tiwari, Ph.D. dissertation, Rutgers University New Brunswick, 2008

  42. V.H. Thanh, K. Shibasaki, J. Agric. Food Chem. 24, 1117 (1967)

    Article  Google Scholar 

  43. V.M. Mathavan, B.K. Boh, S. Tayyab, Indian J. Biochem. Biophys. 46, 325 (2009)

    CAS  Google Scholar 

  44. G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970)

    Article  CAS  Google Scholar 

  45. R. Richert, A. Hener, Macromolecules 30, 4038 (1997)

    Article  CAS  Google Scholar 

  46. R. Duchowicz, M.L. Ferrer, A.U. Acuna, Photochem. Photobiol. 68, 494 (1998)

    Article  CAS  Google Scholar 

  47. C.A. Parker, Photoluminescence of solutions (Elsevier, Amsterdam, 1968)

    Google Scholar 

  48. S.L. Shamblin, B.C. Hancock, Y. Dupuis, M.J. Pikal, J. Pharm. Sci. 89, 417 (2000)

    Article  CAS  Google Scholar 

  49. G.B. Strambini, M. Gonnelli, Chem. Phys. Lett. 115, 196 (1985)

    Article  CAS  Google Scholar 

  50. S. Shirke, Y. You, R.D. Ludescher, Biophys. Chem. 123, 122 (2006)

    Article  CAS  Google Scholar 

  51. J. Guillet, Polymer photophysics and photochemistry (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  52. C.P. McCaul, R.D. Ludescher, Photochem. Photobiol. 70, 166 (1999)

    Article  CAS  Google Scholar 

  53. R. Tiwari, R.D. Ludescher, J. Fluoresc. doi (2010). doi:10.1007/s10895-009-0530-7

    Google Scholar 

  54. F. Bishai, E. Kuntz, L. Augenstein, Biochim. Biophys. Acta Prot. Struct. 140, 381 (1967)

    CAS  Google Scholar 

  55. V.V. Korolev, N.M. Bazhin, Spectrochimica Acta Part A 56, 2501 (2000)

    Article  CAS  Google Scholar 

  56. V. Stannett, J.L. Williams, J. Polymer Sci. Part C 10, 45 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Ludescher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Draganski, A.R., Tiwari, R.S., Sundaresan, K.V. et al. Photophysical Probes of the Amorphous Solid State of Proteins. Food Biophysics 5, 337–345 (2010). https://doi.org/10.1007/s11483-010-9185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-010-9185-9

Keywords

Navigation