Skip to main content
Log in

Effects of Extrusion on the Emulsifying Properties of Rumen and Soy Protein

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Defatted rumen protein and soy protein concentrate were extruded in a 15.5:1 L/D single-screw extruder at the optimum conditions for their expansion (150°C and 35% moisture, and 130°C and 35% moisture, respectively). Emulsions were produced with these proteins and studied by rheology and time domain low-resolution 1H nuclear magnetic resonance (TD-NMR). Extrusion increased storage modulus of rumen protein emulsions. The opposite was observed for soy protein. Mechanical relaxation showed the existence of three relaxing components in the emulsions whose relative contributions were changed by extrusion. Likewise, spin–spin relaxation time constants (T 2) measured by TD-NMR also showed three major distinct populations of protons in respect to their mobility that were also altered by extrusion. Extrusion increased surface hydrophobicity of both rumen and soy protein. Solubility of rumen protein increased with extrusion whereas soy protein had its solubility decreased after processing. Extrusion promoted molecular reorganization of protein, increasing its superficial hydrophobicity, affecting its interfacial properties and improving its emulsifying behavior. The results show that extrusion can promote the use of rumen, a by-product waste from the meat industry, in human nutrition by replacing soy protein in food emulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.A. Ledward, R.A. Lawrie, J. Chem Technol Biotechnol B-Biotechnology. 34, 223–228 (1984)

    Google Scholar 

  2. R.A. Lawrie, D.A. Ledward, Lawrie’s Meat Science, Woodhead Publishing in Food Science, Technology and Nutrition (2006)

  3. A.C. Conti e Silva, J.A.G. Arêas, Nutrire. 22, 21-31 (2001)

  4. A.C. Conti e Silva, R.J. Cruz, J.A.G. Arêas, Meat Science. 84, 409–412 (2010)

    Google Scholar 

  5. E. Cheng, S. Alavi, T. Pearson, R. Agbisit, J. Text Studies. 38, 473–498 (2007)

    Article  Google Scholar 

  6. V. Tolstoguzov, J. Am Oil Chem Soc. 70, 417–424 (1993)

    Article  CAS  Google Scholar 

  7. S. Singh, S. Gamlath, L. Wakeling, Int. J. Food Sci. Technol. 42, 916–929 (2007)

    Article  CAS  Google Scholar 

  8. J.A.G. Arêas, Crit. Rev. Food Sci. Nutr. 32, 365–392 (1992)

    Article  Google Scholar 

  9. M.E. Camire, E.O. Belbez, Cereal Foods World 41, 734–736 (1996)

    CAS  Google Scholar 

  10. B.M. Reifsteck, I.J. Jeon, Food Rev Int. 16, 435–452 (2000)

    Article  CAS  Google Scholar 

  11. J.R. Mitchell, J.A.G. Arêas, in Food Extrusion Science and Technology, eds. J.L. Kokini, C.T. Ho, M.V. Karwe (Marcel Dekker, New York, USA, 1992) Chapter 22, pp. 345–360.

  12. R. Alonso, E. Orue, M. Zabalza, G. Grant, F. Marzo, J. Sci Food Agric. 80, 397–403 (2000)

    Article  CAS  Google Scholar 

  13. El S.-Samahy, E. El-Hady, R. Habiba, T. Moussa-Ayoub, J. Prof Assoc Cactur Devel. 9, 136-147 (2007)

  14. M. Camire, Proc-Ind Chem Changes Food 434, 109–121 (1998)

    CAS  Google Scholar 

  15. T. Fischer, Eur. Food Res. Technol. 218, 128–132 (2004)

    Article  CAS  Google Scholar 

  16. S. Ghosh, D.G. Peterson, J.N. Coupland, Food Biophys. 3, 335–343 (2008)

    Article  Google Scholar 

  17. J. Weiss, E.A. Decker, D.J. McClements, K. Kristbergsson, T. Helgason, T. Awad, Food Biophys. 3, 146–154 (2008)

    Article  Google Scholar 

  18. G.E.P. Box, N.R. Draper, Empirical model-building and response surfaces (Wiley, New York, 1987)

    Google Scholar 

  19. E.N. Figueiredo, J.A.G. Arêas, E.P.G. Arêas, J. Braz. Chem. Soc. 19(7), 1336–1346 (2008)

    Article  CAS  Google Scholar 

  20. H.A. Barnes, J.F. Hutton, K. Walters, An introduction to rheology (Elsevier, Amsterdam, 1989)

    Google Scholar 

  21. C.N. Barros, E.P.G. Arêas, E.N. Figueiredo, J.A.G. Arêas, Coll. Surf. B, Biointerfaces 48, 119–127 (2006)

    Article  CAS  Google Scholar 

  22. H.Y. Carr, E.M. Purcell, Phys. Rev. 94, 630–638 (1954)

    Article  CAS  Google Scholar 

  23. S. Meiboom, D. Gill, Rev. Sci. Instrum 29, 688–691 (1958)

    Article  CAS  Google Scholar 

  24. WinDXP software, version 1.5.0.0, Resonance Instruments, England, 2002.

  25. J.P. Butler, J.A. Reeds, S.V. Dawson, SIAM J. Numer. Anal 18, 381–387 (1981)

    Article  Google Scholar 

  26. AOAC (Association Official Analytical Chemists) Official methods of analysis. 15th ed. (Association of Official Analytical Chemists, Washington, DC, 1990).

  27. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, J. Biol Chem. 193, 265–275 (1951)

    CAS  Google Scholar 

  28. J.R. Wagner, D.A. Sorgentini, M.C. Añon, J. Agric Food Chem. 48, 3159–3165 (2000)

    Article  CAS  Google Scholar 

  29. S.H. Prudêncio-Ferreira, J.A.G. Arêas, J. Food Sci. 58, 378–381 (1993)

    Article  Google Scholar 

  30. S.H. Prudêncio-Ferreira, J.A.G. Arêas, Food Chem. 47, 111–119 (1993)

    Article  Google Scholar 

  31. L.C.M.A. Vaz, J.A.G. Arêas, Meat Sci. 84, 39–45 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from FAPESP and CNPq, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alfredo G. Arêas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, A.C.C., Arêas, E.P.G., Silva, M.A. et al. Effects of Extrusion on the Emulsifying Properties of Rumen and Soy Protein. Food Biophysics 5, 94–102 (2010). https://doi.org/10.1007/s11483-010-9149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-010-9149-0

Keywords

Navigation