Skip to main content
Log in

Photopyroelectric Detection of Vegetable Oils' Adulteration

  • Original Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Highly accurate photopyroelectric (PPE) investigation, in the thermal-wave-resonator-cavity configuration, was combined with gas chromatography (GC), in order to detect adulteration of flax oil by mixing with sunflower oil. It was found that the value of the thermal diffusivity for the investigated mixtures ranges from 8.07 × 108m2/s (pure sunflower oil) to 10.03 × 108m2/s (pure flax oil) and is directly correlated with the total amount of the polyunsaturated fatty acids from oils composition. The correlation between the PPE signal and the composition of unadulterated and adulterated vegetable oils confirms the data obtained previously on fresh and spoiled vegetable oils and suggests that the thermal diffusivity may be a suitable parameter to detect oils' quality and their early spoilage and adulteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Dadarlat, C. Neamtu, M. Streza, C. Socaciu, C. Bele, F. Dulf, Eur J Lipid Sci Technol 111, 148 (2009). doi:10.1002/ejlt.200800076

    Article  CAS  Google Scholar 

  2. A. Mandelis, M. Zver, J Appl Phys 57, 4421 (1985). doi:10.1063/1.334565

    Article  CAS  Google Scholar 

  3. M. Chirtoc, G. Mihailescu, Phys Rev B 40, 9606 (1989). doi:10.1103/PhysRevB.40.9606

    Article  CAS  Google Scholar 

  4. M. Chirtoc, D. Dadarlat, D. Bicanic, J.S. Antoniow, M. Egee, Progress in Photothermal and Photoacoustic Science and Technology, Vol. III (SPIE Optical Engn, Bellingham, WA, 1997), p. 185

    Google Scholar 

  5. D. Dadarlat, D. Bicanic, H. Visser, F. Mercuri, A. Frandas, J Am Oil Chem Soc 72, 273 (1995). doi:10.1007/BF02541082

    Article  CAS  Google Scholar 

  6. J. Shen, A. Mandelis, Rev Sci Instrum 66, 4999 (1995). doi:10.1063/1.1146123

    Article  CAS  Google Scholar 

  7. D. Dadarlat, C. Neamtu, V. Tosa, M. Streza, Acta Chim Slov 54, 149 (2007)

    CAS  Google Scholar 

  8. S. Delenclos, D. Dadarlat, N. Houriez, S. Longuermart, C. Kolinsky, A.H. Sahraoui, Rev Sci Instrum 78, 024902 (2007). doi:10.1063/1.2536357

    Article  CAS  Google Scholar 

  9. D. Dadarlat, C. Neamtu, R. Pop, M. Marinelli, F. Mercuri, J. Optoel. Adv. Mater 9, 2847 (2007)

    CAS  Google Scholar 

  10. D. Dadarlat, C. Neamtu, E. Surducan, A.H. Sahraoui, S. Longuemart, D. Bicanic, Instrum Sci Technol 30, 387 (2002). doi:10.1081/CI-120015447

    Article  CAS  Google Scholar 

  11. W.W. Christie, J Lipid Res 23, 1072 (1982)

    CAS  Google Scholar 

  12. D. Brodnjak-Vončina, C. Cencič Kodba, M. Novič, Chemom Intell Lab Syst 75, 31 (2005). doi:10.1016/j.chemolab.2004.04.011

    Article  Google Scholar 

  13. D.S. Lee, B.S. Noh, S.Y. Bae, K. Kim, Anal Chim Acta 358, 163 (1998). doi:10.1016/S0003-2670(97)00574-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Romanian Ministry of Education and Research through the National Research Programs 39N/2006 and CEEX 65/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Streza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streza, M., Dadarlat, D., Socaciu, C. et al. Photopyroelectric Detection of Vegetable Oils' Adulteration. Food Biophysics 4, 147–150 (2009). https://doi.org/10.1007/s11483-009-9111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-009-9111-1

Keywords

Navigation