Skip to main content

Advertisement

Log in

Antioxidant and Neuroprotective Properties of Sour Tea (Hibiscus sabdariffa, calyx) and Green Tea (Camellia sinensis) on some Pro-oxidant-induced Lipid Peroxidation in Brain in vitro

  • Original Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Oxidative stress is the cause of neurodegenerative disorders such as Lou Gehrig’s disease, Parkinson’s disease, and Huntington’s disease; one practical way to prevent and manage neurodegenerative diseases is through the eating of food rich in antioxidants (dietary means). This present study sought to compare the ability of aqueous extract of sour tea (Hibiscus sabdariffa, calyx) and green tea (Camellia sinensis) to prevent some pro-oxidant [Fe (II), sodium nitroprusside, quinolinic acid]-induced lipid peroxidation in rat’s brain in vitro. Aqueous extracts of both teas were prepared (1 g tea in 100 ml of hot water). Thereafter, the ability of the extracts to prevent 25 μM FeSO4, 7 μM sodium nitroprusside, and 1 mM quinolinic acid-induced lipid peroxidation in isolated rat’s brain tissue preparation was determined in vitro. Subsequently, the total phenol content, reducing power, Fe (II) chelating and OH radical scavenging ability were determined. The results of the study revealed that both teas significantly (P < 0.05) inhibit lipid peroxidation in basal and pro-oxidant-induced lipid peroxidation in the rat’s brain homogenates in a dose-dependent manner. Also, the teas had high total phenol content [sour (13.3 mg/g); green (24.5 mg/g)], reducing power, and Fe (II) chelating and OH radical scavenging ability (except sour tea). However, green tea had a significantly higher (P < 0.05) ability to inhibit lipid peroxidation in both the basal and pro-oxidant-induced lipid peroxidation in rat’s brain homogenates in vitro. Therefore, it is obvious from the study that both teas had high antioxidant properties and could inhibit Fe2+, sodium nitroprusside, and quinolinic acid-induced lipid peroxidation in brain. However, green tea had a higher inhibitory effect, which may probably be due to its high total phenol content, reducing power, Fe (II) chelating ability, and OH radical scavenging ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Oboh, J. Pharm .Toxicol. 1(1), 47–53 (2006)

    Article  CAS  Google Scholar 

  2. G. Oboh, R.L. Puntel, J.B.T. Rocha, Food. Chem. 102(1), 178–185 (2007). doi:10.1016/j.foodchem.2006.05.048

    Article  CAS  Google Scholar 

  3. J.L. Baudaux, J. Peynet, A. Guillausseau, A. Legrand, J. Delattre, F. Rousselet, Ann. Bio. Clin. 51, 494 (1993)

    Google Scholar 

  4. K.J.A. Davies, Oxidative stress: the paradox of aerobic life Biochem. Soc. Symposium 61, 1–34 (1994)

    Google Scholar 

  5. S. Sasaki, T. Ohta, E.A. Decker, J. Agric. Food. Chem. 44, 1682–1686 (1996). doi:10.1021/jf950778h

    Article  CAS  Google Scholar 

  6. O.I. Aruoma, Food. Chem. Toxicol. 62, 671–683 (1994). doi:10.1016/0278-6915(94)90011-6

    Google Scholar 

  7. I. Gulcın, M. Oktay, E. Kıreccı, O.I. Kufrevıoglu, Food. Chem. 83, 371–382 (2003). doi:10.1016/S0308-8146(03)00098-0

    Article  CAS  Google Scholar 

  8. I. Vega-Naredo, B. Poeggeler, V. Sierra-Sanchez, B. Caballero, C. Tomas-Zapico, O. Alvarez-Garcia et al., J. Pineal. Res. 39, 266–275 (2005). doi:10.1111/j.1600-079X.2005.00243.x

    Article  CAS  Google Scholar 

  9. R.G. Shulman, D.L. Rothman, K.L. Behar, F. Hyder, Trends. Neurosci. 27(8), 489–495 (2004). doi:10.1016/j.tins.2004.06.005

    Article  CAS  Google Scholar 

  10. G. Oboh, A.A. Akindahunsi, Nutr. Health. 18(1), 29–36 (2004)

    CAS  Google Scholar 

  11. G. Oboh, Lebensm.-Wiss.u.-Technol. 38(5), 513–517 (2005)

    CAS  Google Scholar 

  12. P. Hochstein, A.H. Atallah, Mutat. Res. 202, 363–375 (1988). doi:10.1016/0027-5107(88)90198-4

    CAS  Google Scholar 

  13. L.M. Perry, Medicinal plants of east and southeast Asia (MIT Press, Cambridge, 1980)

    Google Scholar 

  14. S. Passamonti, U. Vrhovsek, A. Vanzo, F. Mattivi, J. Agric. Food. Chem. 53, 7029–7034 (2005). doi:10.1021/jf050565k

    Article  CAS  Google Scholar 

  15. V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Methods. Enzymol. 299, 152–178 (1999). doi:10.1016/S0076-6879(99)99017-1

    Article  CAS  Google Scholar 

  16. G. Minotti, S.D. Aust, Free. Radic. Biol. Med. 3, 379–387 (1987). doi:10.1016/0891-5849(87)90016-5

    Article  CAS  Google Scholar 

  17. R.L. Puntel, C.W. Nogueira, J.B.T. Rocha, Neurochem. Res. 30(2), 225–235 (2005). doi:10.1007/s11064-004-2445-7

    Article  CAS  Google Scholar 

  18. B. Halliwell, J.M.C. Gutteridge, FEBS. Lett. 128, 347–352 (1981). doi:10.1016/0014-5793(81)80114-7

    Article  CAS  Google Scholar 

  19. R. Pulido, L. Bravo, F. Saura-Calixto, J. Agric. Food. Chem. 48, 3396–3402 (2000). doi:10.1021/jf9913458

    Article  CAS  Google Scholar 

  20. N.A.V. Belle, G.D. Dalmolin, G. Fonini, M.A. Rubim, J.B.T. Rocha, Brain. Res. 1008, 245–251 (2004). doi:10.1016/j.brainres.2004.02.036

    Article  CAS  Google Scholar 

  21. H. Ohkawa, N. Ohishi, K. Yagi, Anal. Biochem. 95, 351–358 (1979). doi:10.1016/0003-2697(79)90738-3

    Article  CAS  Google Scholar 

  22. J.H. Zar, Biostatistical analysis (Prentice-Hall, Englewood Cliffs, 1984), p. 620

    Google Scholar 

  23. Y. Chu, J. Sun, X. Wu, R.H. Liu, J. Agric. Food. Chem. 50, 6910–6916 (2002). doi:10.1021/jf020665f

    Article  CAS  Google Scholar 

  24. J. Sun, Y. Chu, X. Wu, R. Liu, J. Agric. Food. Chem. 50, 7449–7454 (2002). doi:10.1021/jf0207530

    Article  CAS  Google Scholar 

  25. G. Oboh, J.B.T. Rocha, Eur. Food. Res. Technol. 225(2), 239–247 (2007). doi:10.1007/s00217-006-0410-1

    Article  CAS  Google Scholar 

  26. A. Marin, F. Ferreres, F.A. Tomas-Barberan, M.I. Gil, J. Agric. Food. Chem. 52, 3861–3869 (2004). doi:10.1021/jf0497915

    Article  CAS  Google Scholar 

  27. M. Materska, I. Perucka, J. Agric. Food. Chem. 53, 1750–1756 (2005). doi:10.1021/jf035331k

    Article  CAS  Google Scholar 

  28. K.W. Lee, H.J. Lee, J. Nutr. 132(4), 785 (2002)

    CAS  Google Scholar 

  29. M.P. Zago, S.V. Verstraeten, P.I. Oteiza, Biol. Res. 33(2), 143–150 (2000)

    Article  CAS  Google Scholar 

  30. J.N. Bates, M.T. Baker, R. Guerra, D.G. Harrison, Biochem. Pharmacol. 42, S157–S165 (1990). doi:10.1016/0006-2952(91)90406-U

    Article  Google Scholar 

  31. B. Halliwell, J.M.C. Gutteridge, Free radicals in biology and medicine, 3rd edn. (Oxford University Press, Oxford, 1999), p. 936

    Google Scholar 

  32. A. Pannala, C.A. Rice-Evans, B. Halliwell, S. Singh, Biophys. Res. Commun. 232, 164–168 (1997). doi:10.1006/bbrc.1997.6254

    Article  CAS  Google Scholar 

  33. W. Cammer, Brain. Res. 896, 157–160 (2001). doi:10.1016/S0006-8993(01)02017-0

    Article  CAS  Google Scholar 

  34. M. Wolfensberger, U. Amsler, M. Cuenod, A.C. Foster, W.O. Whetsell Jr., R. Schwarcz, Neurosci. Lett. 41, 247–252 (1983). doi:10.1016/0304-3940(83)90458-5

    Article  CAS  Google Scholar 

  35. J. Cabrera, R.J. Reiter, D. Tan, W. Qi, R.M. Sainz, J.C. Mayo et al., Neuropharmacol. 39, 507–514 (2000). doi:10.1016/S0028-3908(99)00128-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Brazil and Academy of Science for the Developing World (TWAS), Trieste Italy, for granting Dr. G. Oboh a Post-Doctoral fellowship tenable at Biochemical Toxicology Unit of the Department of Chemistry, Federal University of Santa Maria, Brazil. This study was also supported by CAPES, FIPE/UFSM, VITAE Foundation, and FAPERGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Oboh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oboh, G., Rocha, J.B.T. Antioxidant and Neuroprotective Properties of Sour Tea (Hibiscus sabdariffa, calyx) and Green Tea (Camellia sinensis) on some Pro-oxidant-induced Lipid Peroxidation in Brain in vitro . Food Biophysics 3, 382–389 (2008). https://doi.org/10.1007/s11483-008-9092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-008-9092-5

Keywords

Navigation