Skip to main content
Log in

Trehalose–Water–Salt Interactions Related to the Stability of β-Galactosidase in Supercooled Media

  • Original Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

An Erratum to this article was published on 27 March 2008

An Erratum to this article was published on 27 March 2008

Abstract

The conservation of desirable properties in foods and ingredients is often based on the maintenance of the amorphous metastable properties of the systems. Enzymes may be stabilized by drying in saccharide matrices, but a second excipient is generally required to improve sugar protective effects. The effect of electrolytes on the thermophysical properties of sugar systems is of special interest because of their major influence on water structure and their possible interactions with biomolecules. Salts affect the kinetics of very important changes in sugar systems such as crystallization. The purpose of the present work was to analyze fungal β-galactosidase stability in supercooled systems of trehalose-containing electrolytes (water soluble acetates, citrates, and chlorides of magnesium and potassium). The degree of sugar crystallization was also related to enzyme stability. Potassium citrate and acetate improved enzyme stability during freeze-drying and thermal treatment of samples at water activity (a w) of 0.22. However, trehalose crystallization inhibition at a w = 0.43 (which was about 50–60%, related to the system without salt) impaired enzyme protection. Certain salts may act retarding sugar crystallization, but in the presence of salts, trehalose crystallization is even more critical because the enzyme is confined in a highly salt-concentrated region. Thus, crystallization inhibition by sugar–salt combinations should be carefully conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T. Suzuki, K. Imamura, K. Yamamoto, T. Satoh, M. Okazaki, J. Chem. Eng. Jpn. 30, 609–613 (1997)

    Article  CAS  Google Scholar 

  2. M.F. Mazzobre, M.P. Buera, Biochem. Biophys. Acta 1473, 337–344 (1999)

    CAS  Google Scholar 

  3. J.H. Crowe, J.F. Carpenter, L.M. Crowe, Annu. Rev. Physiol. 60, 73–103 (1998)

    Article  CAS  Google Scholar 

  4. J.M. Aguilera, M. Karel, Crit. Rev. Food Sci. Nutr. 37(3), 287–309 (1997)

    Article  CAS  Google Scholar 

  5. J.F. Carpenter, J.H. Crowe, T. Arakawa, J. Dairy Sci. 73, 3627–3636 (1990)

    Article  CAS  Google Scholar 

  6. M.P. Longinotti, M.F. Mazzobre, M.P. Buera, H.R. Corti, Phys. Chem. Chem. Phys. 4, 533–540 (2002)

    Article  CAS  Google Scholar 

  7. F. Sussich, R. Urbani, F. Princivalle, A. Cesàro, J. Am. Chem. Soc. 120, 7893–7899 (1998)

    Article  CAS  Google Scholar 

  8. F. Sussich, A. Cesàro, J. Therm. Anal. Calorim. 62, 757–768 (2000)

    Article  CAS  Google Scholar 

  9. H. Nagase, T. Endo, H. Ueda, M. Nakagaki, Carbohydr. Res. 337, 167–173 (2002)

    Article  CAS  Google Scholar 

  10. P.R. Santagapita, M.P. Buera, Chemical and physical stability of disaccharides as affected by the presence of MgCl2, in Water Properties of Food, Pharmaceutical, and Biological Materials, ed. by M.P. Buera, J. Welti-Chanes, P. Lillford, H. Corti (CRC. Taylor and Francis, Boca Raton, USA, 2006), p. 663

    Google Scholar 

  11. J.F. Carpenter, L.M. Crowe, J.H. Crowe, Biochem. Biophys. Acta 923, 109–115 (1987)

    CAS  Google Scholar 

  12. S. Cardona, C. Schebor, M.P. Buera, M. Karel, J. Chirife, J. Food Sci. 62, 105–112 (1997)

    Article  CAS  Google Scholar 

  13. M.F. Mazzobre, M.P. Buera, J. Chirife, Biotechnol. Prog. 13, 195–199 (1997)

    Article  CAS  Google Scholar 

  14. Y.H. Roos, M. Karel, Biotechnol. Prog. 6, 159–163 (1990)

    Article  CAS  Google Scholar 

  15. L. Greenspan, J. Res. Nat. Bur. Stand., A Phys. Chem. 81A, 89–96 (1977)

    Google Scholar 

  16. Y.K. Park, M.S.S. De Santi, G.M. Pastore, J. Food Sci. 44(1), 100–103 (1979)

    Article  CAS  Google Scholar 

  17. M.P. Buera, C. Schebor, B. Elizalde, J. Food Eng. 67, 157–165 (2005)

    Article  Google Scholar 

  18. Y.H. Roos, Phase Transitions in Foods (Academic, San Diego, CA, 1995)

    Google Scholar 

  19. P.R. Santagapita, M.P. Buera, J Non-cryst Solids DOI 10.1016/j.jnoncrysol.2007.08.050 (2007)

  20. J.L. Green, C.A. Angell, J. Phys. Chem. 93, 2880–2882 (1989)

    Article  CAS  Google Scholar 

  21. L.S. Taylor, P. York, J. Pharm. Sci. 87, 347–355 (1998)

    Article  CAS  Google Scholar 

  22. Y.H. Roos, Carbohydr. Res. 238, 39–48 (1993)

    Article  CAS  Google Scholar 

  23. F. Sussich, F. Princivalle, A. Cesàro, Carbohydr. Res. 322, 113–119 (1999)

    Article  CAS  Google Scholar 

  24. M.F. Mazzobre, P.R. Santagapita, N. Gutierrez, M.P. Buera, Consequences of matrix structural changes on chemical and functional stability of enzymes as affected by electrolytes, in Food Engineering Integrated Approach, ed. by G.F. Gutierrez-López, G.B. Barbosa-Cánovas, J. Welti-Channes, E. Parada-Arias (Springer, Germany, 2007), p. 70

    Google Scholar 

  25. D.P. Miller, P.B. Conrad, S. Fucito, H.R. Corti, J.J. de Pablo, J. Phys. Chem. B. 104, 10419–10425 (2000)

    Article  CAS  Google Scholar 

  26. E.P.W. Kets, P.J. Ijpelaar, F.A. Hoekstra, H. Vromans, Cryobiology 48, 46–54 (2004)

    Article  CAS  Google Scholar 

  27. E. Leontidis, Curr. Opin. Colloid Interface Sci. 7, 81–91 (2002)

    Article  CAS  Google Scholar 

  28. S. Calligaris, M.C. Nicoli, Food Chem. 94, 130–134 (2006)

    Article  CAS  Google Scholar 

  29. F. Hofmeister, Archiv für experimentelle Pathologie und Pharmakologie 24, 247–260 (1888)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CONICET (PIP 5799), Universidad de Buenos Aires (X226), and ANPYCT, PICT No. 20545 and 32192.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pilar Buera.

Additional information

Santagapita, Research Fellow, CONICET, Argentina.

Buera, Member of CONICET, Argentina.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11483-008-9075-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santagapita, P.R., Buera, M.P. Trehalose–Water–Salt Interactions Related to the Stability of β-Galactosidase in Supercooled Media. Food Biophysics 3, 87–93 (2008). https://doi.org/10.1007/s11483-007-9052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-007-9052-5

Keywords

Navigation