Skip to main content
Log in

A STEPSCAN Differential Scanning Calorimetry Study of the Thermal Behavior of Chocolate

  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

STEPSCAN differential scanning calorimetry, a form of temperature-modulated differential scanning calorimetry (DSC), was used to study the thermal transitions occurring during the heating of chocolate of varying thermal histories. Conventional DSC thermograms acquired during heating of chocolate can be complex, with the observation of a series of overlapping endothermic and exothermic events. STEPSCAN DSC was used to deconvolute the total heat flow into reversing (rapid) and nonreversing (slow) components, which were assigned to melting and recrystallization events, respectively. Such a separation is usually difficult using conventional DSC. The recrystallization events were more pronounced in rapidly cooled samples where the polymorphic form V had been nucleated through tempering. Because of the presence of artifacts, STEPSCAN can only provide a crude separation of reversing and nonreversing signals in this system. The general applicability and limitations of STEPSCAN DSC as well as the effects of prenucleation and rate of cooling of chocolate are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. R.L. Wille and E.S. Lutton, J Am Oil Chem Soc, 43, 491–496 (1966).

    CAS  Google Scholar 

  2. J. Schlichter-Aronhime and N. Garti, Solidification and polymorphism in cocoa butter and the blooming problems. In: Crystallisation and Polymorphism of Fats and Fatty Acids, edited by N. Garti, K. Sato (Marcel Dekker, Inc., New York 1988), pp. 363–391

    Google Scholar 

  3. R.B. Nelson, Enrobers, moulding equipment and coolers. In: Industrial Chocolate Manufacture and Use, 3rd edn., edited by S.T. Beckett (Blackwell Science, Oxford 1999), pp. 259–286

    Google Scholar 

  4. G. Keller, F. Lavigne, C. Loisel, M. Ollivon and C. Bourgaux, J Therm Anal 47, 1545–1565 (1996).

    Article  CAS  Google Scholar 

  5. C. Loisel, G. Keller, G. Lecq, C. Bourgaux and M. Ollivon, J Am Oil Chem Soc 75, 425–439 (1998).

    CAS  Google Scholar 

  6. G. Spigno, G. Pagella and D.M. De Faveri, Ital J Food Sci 13, 275–284 (2001).

    CAS  Google Scholar 

  7. P. Robinson and W.J. Sichina, Characterization of chocolate using power compensated DSC. In: PerkinElmer Technical Note; PETech–43 1 (2000).

  8. P. De Meuter, H. Rahier and B. Van Mele, Int J Pharm 192, 77–84 (1999).

    Article  Google Scholar 

  9. E. Verdonck, K. Schaap and L.C. Thomas, Int J Pharm 192, 3–20 (1999).

    Article  CAS  Google Scholar 

  10. B.B. Sauer, W.G. Kampert, E. Neal Blanchard, S.A. Threefoot and B.S. Hsiao, Polymer 41, 1099–1108 (2000).

    Article  CAS  Google Scholar 

  11. J.E.K. Schawe, Thermochim Acta 260, 1–16 (1995).

    Article  CAS  Google Scholar 

  12. B. Wunderlich, A. Boller, I. Okazaki and K. Ishikiriyama, Thermochim Acta 305, 125–136 (1997).

    Article  Google Scholar 

  13. M. Reading, A. Luget and R. Wilson, Thermochim Acta 238, 295–307 (1994).

    Article  CAS  Google Scholar 

  14. Y. Kraftmakher, Modulation Calorimetry (Springer, New York 2004).

    Google Scholar 

  15. L.M.W.K. Gunaratne, R.A. Shanks and G. Amarasinghe, Thermochim Acta 423, 127–135 (2004).

    Article  CAS  Google Scholar 

  16. P.S. Gill, S.R. Sauerbrunn and M. Reading, J Therm Anal 40, 931–939 (1993).

    CAS  Google Scholar 

  17. M. Sandor, N.A. Bailey and E. Mathiowitz, Polymer 43, 279–288 (2002).

    Article  CAS  Google Scholar 

  18. A.G.F. Stapley, H. Tewkesbury and P.J. Fryer, J Am Oil Chem Soc 76, 677–685 (1999).

    CAS  Google Scholar 

  19. S.D. MacMillan, K.J. Roberts, M.A. Wells, M.C. Polgreen and I.H. Smith, Cryst Growth Des 3, 117–119 (2003).

    Article  CAS  Google Scholar 

  20. G. Mazzanti, S.E. Guthrie, E.B. Sirota, A.G. Marangoni and S.H.J. Idziak, Cryst Growth Des 3, 721–725 (2003).

    Article  CAS  Google Scholar 

  21. C. Loisel, G. Keller, G. Lecq, B. Launay and M. Ollivon, J Food Sci 62, 773–780 (1997).

    Article  CAS  Google Scholar 

  22. J.E.K. Schawe and G.W.H. Hohne, Thermochim Acta 287, 213–223 (1996).

    Article  CAS  Google Scholar 

  23. S.Y. Reddy, N. Full, P.S. Dimick and G.R. Ziegler, J Am Oil Chem Soc 73, 723–727 (1996).

    Article  Google Scholar 

  24. J.W. Hagemann, Thermal behaviour and polymorphism of acylglycerides. In: Crystallisation and Polymorphism of Fats and Fatty Acids, edited by N. Garti and K. Sato (Dekker, New York 1988), pp. 10–87

    Google Scholar 

  25. W.R. Rudnicki and M. Niezgódka, Modelling phase transitions in chocolate. 4th International Symposium on Confectionery Science, Hershey, PA, USA (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad A. Farhat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baichoo, N., MacNaughtan, W., Mitchell, J.R. et al. A STEPSCAN Differential Scanning Calorimetry Study of the Thermal Behavior of Chocolate. Food Biophysics 1, 169–177 (2006). https://doi.org/10.1007/s11483-006-9018-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-006-9018-z

Keywords

Navigation