Skip to main content

Advertisement

Log in

Biodegradable Nanoparticles for Delivery of Therapeutics in CNS Infection

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Despite the significant advances in neurological medicine, it remains difficult to treat ailments directly involving the brain. The blood brain barrier (BBB) is a tightly regulated, selectively permeable barrier that restricts access from the blood into the brain extracellular fluid (BEF). Many conditions such as tumors or infections in the brain are difficult to treat due to the fact that drugs and other therapeutic agents are unable to easily pass through this relatively impermeable barrier. Human Immunodeficiency Virus (HIV) presents a particular problem as it is able to remain dormant in the brain for years protected from antiretroviral drugs by the BBB. The development of nanoscale carriers over the past few decades has made possible the delivery of therapies with the potential to overcome membrane barriers and provide specific, targeted delivery. This review seeks to provide a comprehensive overview of the various aspects of nanoparticle formulation and their applications in improving the delivery efficiency of drugs, specifically antiretroviral therapeutics to the brain to treat HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aagaard L, Rossi J (2007) RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59(2–3):75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbott N, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Acheampong E, Parveen Z, Muthoga L, Kalayeh M, Mukhtar M, Pomerants R (2005) Human immunodeficiency virus type 1 nef potently induces apoptosis in primary human brain microvascular endothelial cells via the activation of caspases. J Virol 79(7):4257–4269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood M (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    Article  CAS  PubMed  Google Scholar 

  • Andrieux K, Couvreur P (2013) Nanomedicine as a promising approach for the treatment and diagnosis of brain diseases: the example of Alzheimer’s disease. Ann Pharm Fr 71(4):225–233

    Article  CAS  PubMed  Google Scholar 

  • Aryani A, Denecke B (2016) Exosomes as a Nanodelivery system: a key to the future of Neuromedicine? Mol Neurobiol 53(2):818–834

  • Åslund A, Berg S, Hak S, Mørch Ý, Torp S, Sandvig A, Widerøe M, Hansen R, de Lange DC (2015) Nanoparticle delivery to the brain — by focused ultrasound and self-assembled nanoparticle-stabilized microbubbles. J Control Release 220:287–294

    Article  PubMed  CAS  Google Scholar 

  • Atluri V, Hidalgo M, Samikkannu T, Kurapati KRV, Jayant RD, Sagar V, Nair MPN (2015) Effect of human immunodeficiency virus on blood-brain barrier integrity and function: an update. Front Cell Neurosci 9:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas A, Ithakissios D (2002) PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release 79(1–3):123–135

    Article  CAS  PubMed  Google Scholar 

  • Balazs Z, Panzenboeck U, Hammer A, Sovic A, Quehenberger O, Malle E, Sattler W (2004) Uptake and transport of high-density lipoprotein (HDL) and HDL-associated α-tocopherol by an in vitro blood–brain barrier model. J Neurochem 89(4):939–950

    Article  CAS  PubMed  Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    Article  CAS  PubMed  Google Scholar 

  • Batrakova E, Kim M (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battaglia L, Gallarate M, Peira E, Chirio D, Muntoni E, Biasibetti E, Capucchio MT, Valazza A, Panciani PP, Lanotte M, Schiffer D, Annovazzi L, Caldera V,Mellai M, Riganti C (2014) Solid lipid nanoparticles for potential doxorubicin delivery in glioblastoma treatment: preliminary in vitro studies. J Pharm Sci.103(7):2157--65

  • Bilgrami M, O’Keefe P (2014) Neurologic diseases in HIV-infected patients. Handb Clin Neurol 121:1321–1344

    Article  PubMed  Google Scholar 

  • Blecher K, Martinez LR, Tuckman-Vernon C, Nacharaju P, Schairer D, Chouake J, Friedman JM, Alfieri A, Guha C, Nosanchuk JD, Friedman AJ (2012) Nitric oxide-releasing nanoparticles accelerate wound healing in NOD-SCID mice. Nanomedicine 8(8):1364–1371

    CAS  PubMed  Google Scholar 

  • Borgmann K, Rao K, Labhasetwar V, Ghorpade A (2011) Efficacy of tat-conjugated ritonavir-loaded nanoparticles in reducing HIV-1 replication in monocyte-derived macrophages and cytocompatibility with macrophages and human neurons. AIDS Res Hum Retrovir 27:853–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrales P, Han G, Roche C, Nacharaju P, Friedman AJ, Friedman JM (2010) Sustained release nitric oxide from long-lived circulating nanoparticles. Free Radic Biol Med 49:530–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrales P, Han G, Nacharaju P, Friedman AJ, Friedman JM (2011) Reversal of hemoglobin-induced vasoconstriction with sustained release of nitric oxide. Am J Physiol Heart Circ Physiol 300:H49–H56

    Article  CAS  PubMed  Google Scholar 

  • Charafeddine RA, Makdisi J, Schairer D, O’Rourke BP, Diaz-Valencia JD, Chouake J, Kutner A, Krausz A, Adler B, Nacharaju P, Liang H, Mukherjee S, Friedman JM, Friedman A, Nosanchuk JD, Sharp DJ (2015) Fidgetin-like 2: a microtubule-based regulator of wound healing. J Investig Dermatol 135(9):2309–2318

  • Churchill M, Nath A (2013) Where does HIV hide? A focus on the central nervous system. Curr Opin HIV AIDS 8(3):165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cioni C, Annunziata P (2002) Circulating gp120 alters the blood-brain barrier permeability in HIV-1 gp120 transgenic mice. Neurosci Lett 330:299–301

    Article  CAS  PubMed  Google Scholar 

  • Coiras M, Lopez-Huertas M, Peres-Olmeda M, Alcami J (2009) Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs. Nat Rev Microbiol 7(11):798–812

    Article  CAS  PubMed  Google Scholar 

  • Couvreur P, Kante B, Grislain L, Roland M, Speiser P (1982) Toxicity of polyalkylcyanoacrylate nanoparticles II: DOXorubicin-loaded nanoparticles. J Pharm Sci 71(7):790–792

    Article  CAS  PubMed  Google Scholar 

  • Ćurić A, Keller B, Reul R, Möschwitzer J, Fricker G (2015) Development and lyophilization of itraconazole loaded poly(butyl cyanoacrylate) nanospheres as a drug delivery system. Eur J Pharm Sci 78:121–131

    Article  PubMed  CAS  Google Scholar 

  • Dalpiaz A, Fogagnolo M, Ferraro L, Capuzzo A, Pavan B, Rassu G, Salis A, Giunchedi P, Gavini E (2015) Nasal chitosan microparticles target a AIDS prodrug to brain HIV sanctuaries. Antivir Res 123:146–157

    Article  CAS  PubMed  Google Scholar 

  • Daňková J, Buzgo M, Vejpravová J, Kubíčková S, Sovková V, Vysloužilová L, Mantlíková A, Nečas A, Amler E (2015) Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles. Int J Nanomedicine 10:7307–7317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dantsker D, Samuni U, Friedman AJ, Yang M, Ray A, Friedman JM (2002) Geminate rebinding in trehalose-glass embedded myoglobins reveals residue-specific control of intramolecular trajectories. J Mol Biol 315:239–251

    Article  CAS  PubMed  Google Scholar 

  • Date A, Destache C (2014) A review of nanotechnological approaches for the prophylaxis of HIV/AIDS. Biomaterials 34(26):6202–6228

    Article  CAS  Google Scholar 

  • Derakhshandeh K, Erfan M, Dadashzadeh S (2007) Encapsulation of 9-nitrocamptothecin, a novel anticare drug, in biodegradable nanoparticles: factorial design, characterization, and release kinetics. Eur J Pharm Biopharm 66:34–41

    Article  CAS  PubMed  Google Scholar 

  • Destache C, Belgum T, Goede M, Shibata A, Belshan M (2010) Antiretroviral release from poly(DL-lactide-co-glycolide) nanoparticles in mice. J Antimicrob Chemother 65:2183–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eugenin E, Berman J (2007) Gap junctions mediate human immunodeficiency virus-bystander killing in astrocytes. J Neurosci 27:12844–12850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eugenin E, Osiecki K, Lopez L, Goldstein H, Calderon T, Berman J (2006) CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 26:1098–1106

    Article  CAS  PubMed  Google Scholar 

  • Ferrucci A, Nonnemacher M, Wigdahl B (2013) Extracellular HIV-1 viral protein R astrocytic glyceraldehyde 3-phosphate dehydrogenase activity and neuronal survival. J Neurovirol 19:239–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca C, Simoes S, Gaspar R (2002) Paclitatexel-loaded PLGA nanoparticles:preparation, physiochemical characterization and in vitro anti-tumoral activity. J Control Release 83(2):273–286

    Article  CAS  PubMed  Google Scholar 

  • Friedman A, Friedman J (2009) New biomaterials for the sustained release of nitric oxide: past, present and future. Expert Opin Drug Deliv 6:1113–1122

    Article  CAS  PubMed  Google Scholar 

  • Friedman AJ, Han G, Navati MS, Chacko M, Gunther L, Alfieri A, Friedman JM (2008) Sustained release nitric oxide releasing nanoparticles: characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites. Nitric Oxide 19:12–20

    Article  CAS  PubMed  Google Scholar 

  • Friedman AJ, Blecher K, Schairer D, Tuckman-Vernon C, Nacharaju P, Sanchez D, Gialanella P, Martinez LR, Friedman JM, Nosanchuk JD (2011) Improved antimicrobial efficacy with nitric oxide releasing nanoparticle generated S-nitrosoglutathione. Nitric Oxide 25:381–386

    Article  CAS  PubMed  Google Scholar 

  • Friedman A, Blecher K, Sanchez D, Tuckman-Vernon C, Gialanella P, Friedman JM, Martinez LR, Nosanchuk JD (2012) Susceptibility of gram-positive and -negative bacteria to novel nitric oxide-releasing nanoparticle technology. Virulence 2:217–221

    Article  Google Scholar 

  • Friedman J, Friedman A, Cabrales P, Navati M, Nachuraju P, Davies K (2014) Harnessing the topical and systemic therapeutic applications of nitric oxide with nitrite based nitric oxide releasing nanoparticles. Nitric Oxide 42C:121–122

    Google Scholar 

  • Garg M, Asthana A, Agashe HB, Agrawal GP, Jain NK (2006) Stavudine-loaded mannosylated liposomes: in-vitro anti-HIV-I activity, tissue distribution and pharmacokinetics. J Pharm Pharmacol 58:605–616

    Article  CAS  PubMed  Google Scholar 

  • Gastaldi L, Battaglia L, Peira E, Chirio D, Muntoni E, Solazzi I, Gallarate M, Dosio F (2014) Solid lipid nanoparticles as vehicles of drugs to the brain: current state of the art. Eur J Pharm Biopharm J Arbeitsgemeinschaft Für Pharm Verfahrenstechnik EV 87:433–444

    Article  CAS  Google Scholar 

  • Gelman B (2015) Neupathology of HAND with suppressive antiretroviral therapy: encephalitis and Neurodegenertaion reconsidered. Curr HIV/AIDS Rep 12(2):272–279

    Article  PubMed  PubMed Central  Google Scholar 

  • Gelperina S, Khalansky A, Skidan I, Smirnova Z, Bobruskin A, Severin S, Turowski B, Zanella F, Kreuter J (2002) Toxicological studies of DOXorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicol Lett 126(2):131–141

    Article  CAS  PubMed  Google Scholar 

  • Gelperina S, Maksimenko O, Khalansky A, Vanchugova L, Shipulo E, Abbasova K, Berdiev R, Wohlfart S (2010) Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm 74(2):157–163

    Article  CAS  PubMed  Google Scholar 

  • Gerson T, Makarov E, Senanayake T, Gorantla S, Poluektova L, Vinogradov S (2014) Nano-NRTIs demonstrate low neurotoxicity and high antiviral activity against HIV infection in the brain. Nanomedicine 10:177–185

    CAS  PubMed  Google Scholar 

  • Gottfried D, Peterson E, Sheikh A, Yang M, Wang J, Friedman J (1996) Evidence for damped hemoglobin dynamics in a room temperature trehalose glass. J Phys Chem 100:12034–12042

    Article  CAS  Google Scholar 

  • Grabowski N, Hillaireau H, Vergnaud J, Tsapis N, Pallardy M, Kerdine-Romer S, Fattal E (2015) Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages. Int J Pharm 482(1–2):75–82

    Article  CAS  PubMed  Google Scholar 

  • Gray L, Roche M, Flynn J, Wesselingh S, Gorry P, Churchill M (2014) Is the central nervous system a reservoir of HIV-1? Curr Opin HIV AIDS 9:552–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidelines for the Use of Antiretroviral Agents in HIV-1 Infected Adults and Adolescents (2016) https://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-treatment-guidelines/0

  • Gulyaev A, Gelperina S, Skidan I, Antropov A, Kivman G, Kreuter J (1999) Significant transport of DOXorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16(10):1564–1569

    Article  CAS  PubMed  Google Scholar 

  • Ham A, Cost M, Sassi A, Dezzutti C, Rohan L (2009) Targeted delivery of PSC-RANTES for HIV-1 prevention using biodegradable nanoparticles. Pharm Res 26:502–511

    Article  CAS  PubMed  Google Scholar 

  • Han G, Martinez LR, Mihu MR, Friedman AJ, Friedman JM, Nosanchuk JD (2009) Nitric oxide releasing nanoparticles are therapeutic for Staphylococcus aureus abscesses in a murine model of infection. PLoS One 4:e7804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han G, Tar M, Kuppam DS, Friedman A, Melman A, Friedman J, Davies KP (2010) Nanoparticles as a novel delivery vehicle for therapeutics targeting erectile dysfunction. J Sex Med 7:224–233

    Article  CAS  PubMed  Google Scholar 

  • Han G, Nguyen LN, Macherla C, Chi Y, Friedman JM, Nosanchuk JD, Martinez LR (2012) Nitric oxide-releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition. Am J Pathol 180:1465–1473

    Article  CAS  PubMed  Google Scholar 

  • Hanafy A, Farid R, Helmy M, ElGamal E (2016) Pharmacological, toxicological and neuronal localization assessment of galatamine/chitosan complex nanoparticles in rats: future potential contribution in Alzheimer’s disease management. Drug Deliv 4:1–12

    Google Scholar 

  • Hazleton J, Berman J, Eugenin E (2010) Novel mechanisms of central nervous system damage in HIV infection. HIV AIDS (Auckl) 2:39–49

    CAS  Google Scholar 

  • Hekmatara T, Bernreuther C, Khalansky A, Theisen A, Weissenberger J, Matschke J, Gelperina S, Kreuter J, Glatzel M (2009) Efficient systemic therapy of rat glioblastoma by nanoparticle-bound DOXorubicin is due to antiangiogenic effects. Clin Neuropathol 28(3):153–164

    Article  CAS  PubMed  Google Scholar 

  • HIV/AIDS Fact sheet No.360 (2015) http://www.who.int/mediacentre/factsheets/fs360/en

  • Hoekman J, Srivastava P, Ho R (2014) Aerosol stable peptide-coated liposome nanoparticles: a proof-of-concept study with opioid fentanyl in enhancing analgesic effects and reducing plasma drug exposure. J Pharm Sci 103:2231–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jana S, Gandhi A, Sen K, Basu S (2011) Natural polymers and their application in drug delivery and biomedical field. J Pharma Sci Tech 1(1):16–27

    Google Scholar 

  • Jeong J, Sugii Y, Minamiyama M, Takeuchi H, Okamoto K (2007) Interaction between liposomes and RBC in microvessels in vivo. Microvasc Res 73(1):39–47

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Bi D, Wang J, Wang Y, Hu H, Deng Y (2005) Pharmacokinetics and tissue distribution of zidovudine in rats following intravenous administration of zidovudine myristate loaded liposomes. Pharmazie 60:840–843

    CAS  PubMed  Google Scholar 

  • Kanmogne G, Primeaux C, Grammas P (2005) HIV-1 gp120 proteins alter tight junction protein expression and brain endothelial cell permeability: implication for pathogenesis of HIV-associated dementia. J Neuropathol Exp Neurol 64(6):498–505

    Article  CAS  PubMed  Google Scholar 

  • Kanmogne G, Schall K, Leibhart J, Knipe B, Gendelman H, Persidsky Y (2007) HIV-1 gp120 compromises blood brain barrier integrity and enhances monocyte migration across blood-brain barrier: implication for viral neuropathogensis. J Cereb Blood Flow Metab 27(1):123–134

    Article  CAS  PubMed  Google Scholar 

  • Kaur A, Jain S, Tiwary A (2008) Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: in vitro and in vivo evaluation. Acta Pharm Zagreb Croat 58:61–74

    CAS  Google Scholar 

  • Khan I, Shannon CF, Dantsker D, Friedman AJ, Perez-Gonzalez-de-Apodaca J, Friedman JM (2000) Sol-gel trapping of functional intermediates of hemoglobin: geminate and bimolecular recombination studies. Biochemistry 39:16099–16109

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Peer D, Kumar P, Subramanya S, Wu H, Asthana D, Habiro K, Yang Y, Manjunath N, Shimaoka M, Shankar P (2010) RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol Ther 18:370–376

    Article  CAS  PubMed  Google Scholar 

  • Kooijmans S, Vader P, van Dommelen S, van Solinge W, Schiffelers R (2012) Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine 7:1525–1541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krausz AE, Adler BL, Cabral V, Navati M, Doerner J, Charafeddine RA, Chandra D, Liang H, Gunther L, Clendaniel A, Harper S, Friedman JM, Nosanchuk JD, Friedman AJ (2015) Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 11:195–206

    CAS  PubMed  Google Scholar 

  • Kreuter J (2001) Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47(1):65–81

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J (2013) Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (BBB). J Microencapsul 30(1):49–54

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J (2014) Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 71:2–14

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Yadav S, Yadav S (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75:1–18

    Article  CAS  PubMed  Google Scholar 

  • Kuo Y (2005) Loading efficiency of stavudine on polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate copolymer nanoparticles. Int J Pharm 290:161–172

    Article  CAS  PubMed  Google Scholar 

  • Kuo Y, Chen H (2006) Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate–sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood–brain barrier. Int J Pharm 327:160–169

    Article  CAS  PubMed  Google Scholar 

  • Kuo Y, Chen H (2009) Entrapment and release of saquinavir using novel cationic solid lipid nanoparticles. Int J Pharm 365:206–213

    CAS  PubMed  Google Scholar 

  • Kuo Y, Lee C (2012a) Methylmethacrylate-sulfopropylmethacrylate nanoparticles with surface RMP-7 for targeting delivery of antiretroviral drugs across the blood-brain barrier. Colloids Surf B: Biointerfaces 90:75–82

    Article  CAS  PubMed  Google Scholar 

  • Kuo Y, Su F (2007) Transport of stavudine, delavirdine, and saquinavir across the blood-brain barrier by polybutylcyanoacrylate, methylmethacrylate-sulfopropylmethacrylate, and solid lipid nanoparticles. Int J Pharm 340:143–152

    Article  CAS  PubMed  Google Scholar 

  • Lai P, Daear W, Löbenberg R, Prenner E (2014) Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(d,l-lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids Surf B: Biointerfaces 118:154–163

    Article  CAS  PubMed  Google Scholar 

  • Lawther B, Kumar S, Krovvidi H (2011) Blood–brain barrier. Contin Educ Anaesth Crit Care Pain 11:128–132

    Article  Google Scholar 

  • Letendre S, Ellis R, Ances B, McCutchan J (2010) Neurologic complications of HIV disease and their treatment. Top HIV Med 18(2):45–55

    PubMed  PubMed Central  Google Scholar 

  • Li Q, Xu S, Zhou H, Wang X, Dong B, Gao H, Tang J, Yang Y (2015) pH and glutathione Dul-responsive dynamic cross-linked Supramolecular network on Mesoporous silica nanoparticles for controlled anticancer drug release. ACS Appl Mater Interfaces 7(51):28656–28664

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Qi C, Tao K, Chang J, Xu L, Giang X, Zhang Y, Huang L, Li Q, Xie H, Gao J, Shuai X, Wang G, Wang Z, Wang L (2016) Sericin/Dextran Injectable Hydrogel as an Optically Trackable Drug Delivery System for Malignant Melanoma Treatment. ACS Appl Mater Interfaces 8:6411–6422

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Aalinkeel R, Reynolds J, Bindukumar N, Sykes D, Wing-Cheng L, Ding H, Bergey E, Prasad P, Schwartz S (2011) Nanotherapeutics using an HIV-1 poly a and transactivator of HIV-1 LTR-(TAR) specific siRNA. Pathol Res Int 2011:719139

    Article  Google Scholar 

  • Martinez M, Gutierrez A, Armand-Ugon M, Parera M, Gomez J, Clotet B, Este J (2002) Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 16(18):2385–2390

    Article  CAS  PubMed  Google Scholar 

  • Martinez LR, Han G, Chacko M, Mihu MR, Jacobson M, Gialanella P, Friedman AJ, Nosanchuk JD, Friedman JM (2009) Antimicrobial and healing efficacy of sustained release nitric oxide nanoparticles against Staphylococcus aureus skin infection. J Investig Dermatol 129:2463–2469

    Article  CAS  PubMed  Google Scholar 

  • Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, Maekawa T, Venugopal K, Kumar D (2012) Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 7(3):e32616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDannold N, Vykhodtseva N, Hynynen K (2008) Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index. Ultrasound Med Biol 34:834–840

    Article  PubMed  PubMed Central  Google Scholar 

  • Meairs S (2015) Facilitation of drug transport across the blood–brain barrier with ultrasound and microbubbles. Pharmaceutics 7:275–293

    Article  PubMed  PubMed Central  Google Scholar 

  • Melguizo C, Cabeza L, Prados J, Ortiz R, Caba O, Rama A, Delgado Á, Arias J (2015) Enhanced antitumoral activity of DOXorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles. Drug Des Devel Ther 9:6433–6444

    PubMed  PubMed Central  Google Scholar 

  • Mihu MR, Sandkovsky U, Han G, Friedman JM, Nosanchuk JD, Martinez LR (2010) The use of nitric oxide releasing nanoparticles as a treatment against Acinetobacter Baumannii in wound infections. Virulence 1:62–67

    Article  PubMed  Google Scholar 

  • Mordorski B, Pelgrift R, Adler B, Krausz A, da Costa Neto AB, Liang H, Gunther L, Clendaniel A, Harper S, Friedman JM, Nosanchuk JD, Nacharaju P, Friedman AJ (2015) S-nitrosocaptopril nanoparticles as nitric oxide-liberating and transnitrosylating anti-infective technology. Nanomedicine 11:283–291

    CAS  PubMed  Google Scholar 

  • Nacharaju P, Tuckman-Vernon C, Maier KE, Chouake J, Friedman A, Cabrales P, Friedman JM (2012) A nanoparticle delivery vehicle for S-nitroso-N-acetyl cysteine: sustained vascular response. Nitric Oxide 27:150–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nachuraju P, Friedman AJ, Friedman JM, Cabrales P (2011) Exogenous nitric oxide prevents cardiovascular collapse during hemorrhagic shock. Resuscitation 82:607–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpal K, Singh S, Mishra D (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull (Tokyo) 58(11):1423–1430

    Article  CAS  Google Scholar 

  • Navati MS, Friedman JM (2006) Sugar-derived glasses support thermal and photo-initiated electron transfer processes over macroscopic distances. J Biol Chem 281:36021–36028

    Article  CAS  PubMed  Google Scholar 

  • Navati MS, Friedman JM (2009) Reactivity of glass-embedded met hemoglobin derivatives toward external NO: implications for nitrite-mediated production of bioactive NO. J Am Chem Soc 131:12273–12279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navati MS, Friedman JM (2010) Glass matrix-facilitated thermal reduction: a tool for probing reactions of met hemoglobin with nitrite and nitric oxide. J Phys Chem B 114:2938–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoli S, Santi P, Couvreur P, Couarraze G, Colombo P, Fattal E (2001) Design of triptorelin loaded nanosphere for transdermal iontophoretic administration. Int J Pharm 214(1–2):31–35

    Article  CAS  PubMed  Google Scholar 

  • Orlando A, Re F, Sesana S, Rivolta I, Panariti A, Brambilla D, Nicolas J, Couvreur P, Andrieux K, Masserini M, Cazzaniga E (2013) Effect of nanoparticles binding β-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages. Int J Nanomedicine 8:1335–1347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panzenboeck U, Balazs Z, Sovic A, Hrzenjak A, Levak-Frank S, Wintersperger A, Malle E, Satter W (2002) ABCA1 and scavenger receptor class B, type I, are modulators of reverse sterol transport at an in vitro blood-brain barrier constituted of porcine brain capillary endothelial cells. J Biol Chem 277(45):42781–42789

    Article  CAS  PubMed  Google Scholar 

  • Pardridge W (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel T, Zhou J, Piepmeier J, Saltzman W (2012) Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 64(7):701–705

    Article  CAS  PubMed  Google Scholar 

  • Peluso R, Haase A, Stowring L, Edwards M, Ventura P (1985) A Trojan horse mechanism for the spread of visna virus in monocytes. Virology 147:231–236

    Article  CAS  PubMed  Google Scholar 

  • Pereverzeva E, Treschalin I, Bodyagin D, Maksimenko O, Langer K, Dreis S, Asmussen B, Kreuter J, Gelperina S (2007) Influence of the formulation on the tolerance profile of nanoparticle-bound DOXorubicin in healthy rats: focus on cardio- and testicular toxicity. Int J Pharm 337(1–2):346–356

    Article  CAS  PubMed  Google Scholar 

  • Pereverzeva E, Treschalin I, Bodyagin D, Maksimenko O, Kreuter J, Gelperina S (2008) Intravenous tolerance of a nanoparticle-based formulation of DOXorubicin in healthy rats. Toxicol Lett 178(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • Persidsky Y, Stins W, Way D, Witte M, Weinand M, Kim K, Bock P, Gendelman H, Fiala M (1997) A model for monocyte migration through the blood-brain barrier during HIV-1 encephalitis. J Immunol 158(7):3499–3510

    CAS  PubMed  Google Scholar 

  • Persidsky Y, Heilman D, Haorah J, Zelivyanskaya M, Persidsky R, Weber G, Shimokawa H, Kaibuchi K, Ikezu T (2006) Rho-mediated regulation of tight junctions during monocyte migration across the blood-brain barrier in HIV-1 encephalitis (HIVE). Blood 107(12):4770–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petri B, Bootz A, Khalansky A, Hekmatara T, Müller R, Uhl R, Kreuter J, Gelperina S (2007) Chemotherapy of brain tumour using DOXorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release 117(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Phuphanich S, Maria B, Braeckman R, Chamberlain M (2007) A pharmacokinetic study of intra-CSF administered encapsulated cytarabine (DepotCyt) for the treatment of neoplastic meningitis in patients with leukemia, lymphoma, or solid tumors as part of a phase III study. J Neuro-Oncol 81(2):201–208

    Article  CAS  Google Scholar 

  • Prabhakar K, Afzal SM, Kumar PU, Rajanna A, Kishan V (2011) Brain delivery of transferrin coupled indinavir submicron lipid emulsions--pharmacokinetics and tissue distribution. Colloids Surf B: Biointerfaces 86:305–313

    Article  CAS  PubMed  Google Scholar 

  • Puri A, Loomis K, Smith B, Lee J, Yavlovich A, Heldman E, Blumenthal R (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26(6):523–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin M, Landriscina A, Rosen JM, Wei G, Kao S, Olcott W, Agak GW, Paz KB, Bonventre J, Clendaniel A, Harper S, Adler BL, Krausz AE, Friedman JM, Nosanchuk JD, Kim J, Friedman AJ (2015) Nitric oxide-releasing nanoparticles prevent Propionibacterium acnes-induced inflammation by both clearing the organism and inhibiting microbial stimulation of the innate immune response. J Investig Dermatol 135:2723–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramge P, Kreuter J, Lemmer B (1999) Circadian phase-dependent Antinociceptive reaction in mice determined by the hot-plate test and the tail-Flick test after intravenous injection of Dalargin-loaded nanoparticles. Chronobiol Int 16(6):767–777

    Article  CAS  PubMed  Google Scholar 

  • Rao K, Reddy M, Horning J, Labhasetwar V (2008) TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 29:4429–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao K, Ghorpade A, Labhasetwar V (2009) Targeting anti-HIV drugs to the CNS. Expert Opin Drug Deliv 6(8):771–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray A, Friedman BA, Friedman JM (2002) Trehalose glass-facilitated thermal reduction of metmyoglobin and methemoglobin. J Am Chem Soc 124:7270–7271

    Article  CAS  PubMed  Google Scholar 

  • Redhead H, Davis S, Illum L (2001) Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterization and in vivo evaluation. J Control Release 70(3):353

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez M, Pytlik R, Kozak T, Chhanabhai M, Gascoyne R, Lu B, Deitcher S, Winter J (2009) Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory agggressive non-Hodgkin lymphoma: report of the pivotal phase 2 study. Cancer 115(15):3475–3482

    Article  CAS  PubMed  Google Scholar 

  • Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu A, Mallikarjuana N, Manohar S, Liang H, Kulkarni A, Sung H, Sairam M, Aminabhavi T (2005) Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer’s disease. J Control Release 108(2–3):193–214

    Article  CAS  PubMed  Google Scholar 

  • Samuni U, Dantsker D, Khan I, Friedman AJ, Peterson E, Friedman JM (2002) Spectroscopically and kinetically distinct conformational populations of sol-gel-encapsulated carbonmonoxy myoglobin. A comparison with hemoglobin. J Biol Chem 277:25783–25790

    Article  CAS  PubMed  Google Scholar 

  • Samuni U, Roche CJ, Dantsker D, Juszczak LJ, Friedman JM (2006) Modulation of reactivity and conformation within the T-quaternary state of human hemoglobin: the combined use of mutagenesis and sol-gel encapsulation. Biochemistry 45:2820–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuni U, Roche C, Dantsker D, Friedman J (2008) T- and R-state tertiary relaxations in Sol-gel encapsulated Haemoglobin. In: Bolognesi M, Verde C (eds) Dioxygen binding and sensing proteins. A tribute to Beatrice and Jonathan Wittenberg. Springer, Berlin, pp. 133–159

    Chapter  Google Scholar 

  • Sanchez DA, Schairer D, Tuckman-Vernon C, Chouake J, Kutner A, Makdisi J, Friedman JM, Nosanchuk JD, Friedman AJ (2014) Amphotericin B releasing nanoparticle topical treatment of Candida spp. in the setting of a burn wound. Nanomedicine 10:269–277

    CAS  PubMed  Google Scholar 

  • Schairer D, Martinez LR, Blecher K, Chouake J, Nacharaju P, Gialanella P, Friedman JM, Nosanchuk JD, Friedman A (2012) Nitric oxide nanoparticles: pre-clinical utility as a therapeutic for intramuscular abscesses. Virulence 3:62–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Seilhean D, Dzia-Lepfoundzou A, Sazdovitch V, Cannella B, Raine C, Katlama C, Bricaire F, Duyckaerts C, Hauw J (1997) Astrocytic adhesion molecules are increased in HIV-1-associated cognitive/motor complex. Neuropathol Appl Neurobiol 23:83–92

    Article  CAS  PubMed  Google Scholar 

  • Serramia M, Alvarez S, Fuentes-Paniagua E, Clemente M, Sanchez-Nieves J, Gomez R, de la Mata J, Munoz-Fernandez A (2015) In vivo delivery of siRNA to the brain by carbosilane dendrimer. J Control Release 200:60–70

    Article  CAS  PubMed  Google Scholar 

  • Shah L, Kulkarni P, Ferris C, Amiji M (2014) Analgesic efficacy and safety of DALDA peptide analog delivery to the brain using oil-in-water nanoemulsion formulation. Pharm Res 31(10):2724–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shton I, Sarnatskaya V, Prokopenko I, Gamaleia N (2015) Chlorin e6 combined with albumin nanoparticles as a potential composite photosensitizer for photodynamic therapy of tumors. Exp Oncol 37:250–254

    CAS  PubMed  Google Scholar 

  • Siliciano J, Kajdas J, Finzi D, Quinn T, Chadwick K, Margolick J, Kovacs C, Gange S, Siliciano R (2003) Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9:727–728

    Article  CAS  PubMed  Google Scholar 

  • Silva GA (2008) Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the CNS. BMC Neurosci 9:S4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song W, Tang Z, Lei T, Wen X, Wang G, Zhang D, Deng M, Tang X, Chen X (2016) Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. Nanomedicine 12(2):377–386

    CAS  PubMed  Google Scholar 

  • Soppimath K, Aminabhavi T, Kulkarni A, Rudzinski W (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20

    Article  CAS  PubMed  Google Scholar 

  • Sporer B, Koedel U, Paul R, Kohleisen B, Erfle V, Fontana A, Pfister H (2000) Human immunodeficiency virus type-1 nef protein induces blood-brain barrier disruption in the rat: role of matrix metalloproteinase-9. J Neuroimmunol 102(2):125–130

    Article  CAS  PubMed  Google Scholar 

  • Stamatovic S, Keep R, Andjelkovic A (2008) Brain endothelial cell-cell junctions: how to ‘open’ the blood brain barrier. Curr Neuropharmacol 6:179–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiniger S, Kreuter J, Khalansky A, Skidan I, Bobruskin A, Smirnova Z, Severin S, Uhl R, Kock M, Geirger K, Gelperina S (2004) Chemotherapy of glioblastoma in rats using DOXorubicin-loaded nanoparticles. Int J Cancer 109(5):759–767

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang H (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther J Am Soc Gene Ther 18:1606–1614

    Article  CAS  Google Scholar 

  • Tar M, Cabrales P, Navati M, Adler B, Nacharaju P, Friedman AJ, Friedman J, Davies KP (2014) Topically applied NO-releasing nanoparticles can increase Intracorporal pressure and elicit spontaneous erections in a rat model of radical prostatectomy. J Sex Med 11:2903–2914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixerira M, Alonso M, Pinto M, Barbosa C (2005) Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur J Pharm Biopharm 59(3):491–500

    Article  CAS  Google Scholar 

  • Thao L, Byeon H, Lee C, Lee S, Lee E, Choi H, Park E, Youn Y (2016) Pharmaceutical potential of tacrolimus-loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues. Int J Pharm 497:268–276

    Article  CAS  Google Scholar 

  • Upadhyay R, Upadhyay R (2014) Drug delivery systems, CNS protection, and the blood brain barrier, drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res Int BioMed Res In e869269

  • Vila A, Sanchez A, Tobio M, Calvo P, Alonso M (2002) Design of Biodegradable particles for protein delivery. J Control Release 78(1–3):15–24

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov S, Batrakova E, Kabanov A (2004) Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 15:50–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyas T, Shahiwala A, Amiji M (2008) Improved oral bioavailability and brain transport of saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm 347:93–101

    Article  CAS  PubMed  Google Scholar 

  • Wagner S, Zensi A, Wien S, Tschickardt S, Maier W, Vogel T, Worek F, Pietrzik C, Kreuter J, Von Briesen H (2012) Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PLoS One 7(3):e32568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins S, Robel S, Kimbrough I, Robert S, Ellis-Davies G, Sontheimer H (2014) Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat Commun 5:4196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber N, Merkel O, Kissel T, Muñoz-Fernández M (2012) PEGylated poly(ethylene imine) copolymer-delivered siRNA inhibits HIV replication in vitro. J Control Release 157:55–63

    Article  CAS  PubMed  Google Scholar 

  • Wischke C, Schneider C, Neffe AT, Lendlein A (2013) Polyalkylcyanoacrylates as in situ formed diffusion barriers in multimaterial drug carriers. J Control Release Off J Control Release Soc 169:321–328

    Article  CAS  Google Scholar 

  • Wohlfart S, Bernreuther C, Khalansky A, Theisen A, Weissenberger J, Gelperina S, Glatzel M, Kreuter J (2009) Increased numbers of injections of DOXorubicin bound to nanoparticles lead to enhanced efficacy against rat glioblastoma 101/8. J Nanoneurosci 1(2):144–151

    Article  CAS  Google Scholar 

  • Wohlfart S, Khalansky A, Bernreuther C, Michaelis M, Cinatl J Jr, Glatzel M, Kreuter J (2011a) Treatment of glioblastoma with poly(isohexyl cyanoacrylate) nanoparticles. Int J Pharm 415:244–251

  • Wohlfart S, Khalansky A, Gelperina S, Begley D, Kreuter J (2011b) Kinetics of transport of DOXorubicin bound to nanoparticles across the blood–brain barrier. J Control Release 154(1):103–107

    Article  CAS  PubMed  Google Scholar 

  • Wohlfart S, Khalansky A, Gelperina S, Maksimenko O, Bernreuther C, Glatzel M, Kreuter J (2011c) Efficient chemotherapy of rat glioblastoma using DOXorubicin-loaded PLGA nanoparticles with different stabilizers. PLoS One 6(5):e19121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohlfart S, Gelperina S, Kreuter J (2012) Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release 161(2):264–273

    Article  CAS  PubMed  Google Scholar 

  • Yan M, Liang M, Wen J, Liu Y, Lu Y, Chen I (2012) Single siRNA nanocapsules for enhanced RNAi delivery. J Am Chem Soc 134:13542–13545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Zhou Y, Tian W, Li H, Kang-Chu-Li MX, An G, Wang X, Guo G, Ding G (2015) Electromagnetic pulse activated brain microglia via the p38 MAPK pathway. Neurotoxicology 52:144–149

    Article  PubMed  CAS  Google Scholar 

  • Yi Y, Lee C, Liu Q, Freedman B, Collman R (2004) Chemokine receptor utilization and macrophage signaling by human immunodeficiency virus type 1 gp120: implications for neuropathogenesis. J Neurovirol 10(Suppl 1):91–96

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M, Khan M, Khan R, Ahmed B (2013) Preparation, characterization, in vivo and biochemical evaluation of brain targeted piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target 21(3):300–311

    Article  CAS  Google Scholar 

  • Zayyad Z, Spudich S (2015) Neuropathogensis of HIV: from initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep 12(1):16–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Wagner S, Buchel C, von Briesen H, Kreuter J (2009) Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurons. J Control Release 137(1):78–86

    Article  CAS  PubMed  Google Scholar 

  • Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Büchel C, Kreuter J (2010) Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain. J Drug Target 18(10):842–848

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell R, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang H (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther J Am Soc Gene Ther 19:1769–1779

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the members of the FK lab for assistance and proof reading with the manuscript. This work was supported by National Institutes of Health grant AI070740, AI043894, AI11340, and AI114490 to FK. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatah Kashanchi.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeMarino, C., Schwab, A., Pleet, M. et al. Biodegradable Nanoparticles for Delivery of Therapeutics in CNS Infection. J Neuroimmune Pharmacol 12, 31–50 (2017). https://doi.org/10.1007/s11481-016-9692-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-016-9692-7

Keywords

Navigation