Skip to main content

Advertisement

Log in

Chronic Lithium Feeding Reduces Upregulated Brain Arachidonic Acid Metabolism in HIV-1 Transgenic Rat

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

HIV-1 transgenic (Tg) rats, a model for human HIV-1 associated neurocognitive disorder (HAND), show upregulated markers of brain arachidonic acid (AA) metabolism with neuroinflammation after 7 months of age. Since lithium decreases AA metabolism in a rat lipopolysaccharide model of neuroinflammation, and may be useful in HAND, we hypothesized that lithium would dampen upregulated brain AA metabolism in HIV-1 Tg rats. Regional brain AA incorporation coefficients k* and rates J in , markers of AA signaling and metabolism, were measured in 81 brain regions using quantitative autoradiography, after intravenous [1-14 C]AA infusion in unanesthetized 10-month-old HIV-1 Tg and age-matched wildtype rats that had been fed a control or LiCl diet for 6 weeks. k* and J in for AA were significantly higher in HIV-1 Tg than wildtype rats fed the control diet. Lithium feeding reduced plasma unesterified AA concentration in both groups and J in in wildtype rats, and blocked increments in k* (19 of 54 regions) and J in (77 of 81 regions) in HIV-1 Tg rats. These in vivo neuroimaging data indicate that lithium treatment dampened upregulated brain AA metabolism in HIV-1 Tg rats. Lithium may improve cognitive dysfunction and be neuroprotective in HIV-1 patients with HAND through a comparable effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anthony IC, Bell JE (2008) The neuropathology of HIV/AIDS. Int Rev Psychiatry 20(1):15–24

    Article  PubMed  CAS  Google Scholar 

  • Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799

    Article  PubMed  CAS  Google Scholar 

  • Avdoshina V, Garzino-Demo A, Bachis A, Monaco MC, Maki PM, Tractenberg RE, Liu C, Young MA, Mocchetti I (2011) HIV-1 decreases the levels of neurotrophins in human lymphocytes. AIDS 25(8):1126–1128

    Article  PubMed  Google Scholar 

  • Basselin M, Chang L, Seemann R, Bell JM, Rapoport SI (2003) Chronic lithium administration potentiates brain arachidonic acid signaling at rest and during cholinergic activation in awake rats. J Neurochem 85(6):1553–1562

    Article  PubMed  CAS  Google Scholar 

  • Basselin M, Chang L, Bell JM, Rapoport SI (2005a) Chronic lithium chloride administration to unanesthetized rats attenuates brain dopamine D2-like receptor-initiated signaling via arachidonic acid. Neuropsychopharmacology 30:1064–1075

    Article  PubMed  CAS  Google Scholar 

  • Basselin M, Chang L, Seemann R, Bell JM, Rapoport SI (2005b) Chronic lithium administration to rats selectively modifies 5-HT2A/2C receptor-mediated brain signaling via arachidonic acid. Neuropsychopharmacology 30(3):461–472

    Article  PubMed  CAS  Google Scholar 

  • Basselin M, Chang L, Bell JM, Rapoport SI (2006) Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology 31(8):1659–1674

    Article  PubMed  CAS  Google Scholar 

  • Basselin M, Villacreses NE, Lee HJ, Bell JM, Rapoport SI (2007) Chronic lithium administration attenuates up-regulated brain arachidonic acid metabolism in a rat model of neuroinflammation. J Neurochem 102:761–772

    Article  PubMed  CAS  Google Scholar 

  • Basselin M, Kim HW, Chen M, Ma K, Rapoport SI, Murphy RC, Farias SE (2010) Lithium modifies brain arachidonic and docosahexaenoic metabolism in rat lipopolysaccharide model of neuroinflammation. J Lipid Res 51(5):1049–1056

    Article  PubMed  CAS  Google Scholar 

  • Basselin M, Ramadan E, Igarashi M, Chang L, Chen M, Kraft AD, Harry GH, Rapoport SI (2011) Imaging upregulated brain arachidonic acid metabolism in HIV-1 transgenic rats. J Cereb Blood Flow Metab 31(2):486–493

    Article  PubMed  CAS  Google Scholar 

  • Bertin J, Barat C, Methot S, Tremblay MJ (2012) Interactions between prostaglandins, leukotrienes and HIV-1: Possible implications for the central nervous system. Retrovirology 9(1):4

    Article  PubMed  CAS  Google Scholar 

  • Beurel E, Jope RS (2009) Lipopolysaccharide-induced interleukin-6 production is controlled by glycogen synthase kinase-3 and STAT3 in the brain. J Neuroinflammation 6:9

    Article  PubMed  Google Scholar 

  • Bond PA, Brooks BA, Judd A (1975) The distribution of lithium, sodium and magnesium in rat brain and plasma after various periods of administration of lithium in the diet. Br J Pharmacol 53(2):235–239

    Article  PubMed  CAS  Google Scholar 

  • Bosetti F, Rintala J, Seemann R, Rosenberger TA, Contreras MA, Rapoport SI, Chang MC (2002a) Chronic lithium downregulates cyclooxygenase-2 activity and prostaglandin E2 concentration in rat brain. Mol Psychiatry 7:845–850

    Article  PubMed  CAS  Google Scholar 

  • Bosetti F, Seemann R, Bell JM, Zahorchak R, Friedman E, Rapoport SI, Manickam P (2002b) Analysis of gene expression with cDNA microarrays in rat brain after 7 and 42 days of oral lithium administration. Brain Res Bull 57:205–209

    Article  PubMed  CAS  Google Scholar 

  • Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Chang MCJ, Jones CR (1998) Chronic lithium treatment decreases brain phospholipase A2 activity. Neurochem Res 23:887–892

    Article  PubMed  CAS  Google Scholar 

  • Chang MCJ, Bell JM, Purdon AD, Chikhale EG, Grange E (1999) Dynamics of docosahexaenoic acid metabolism in the central nervous system: lack of effect of chronic lithium treatment. Neurochem Res 24:399–406

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Zeng WZ, Yuan PX, Huang D, Jiang YM, Zhao ZH, Manji HK (1999) The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem 72:879–882

    Article  PubMed  CAS  Google Scholar 

  • Chiu CT, Chuang DM (2010) Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 128(2):281–304

    Article  PubMed  CAS  Google Scholar 

  • Clarke RJ, Zhang H, Gamlin PD (2003) Primate pupillary light reflex: receptive field characteristics of pretectal luminance neurons. J Neurophysiol 89(6):3168–3178

    Article  PubMed  Google Scholar 

  • D’Aversa TG, Eugenin EA, Berman JW (2005) NeuroAIDS: contributions of the human immunodeficiency virus-1 proteins Tat and gp120 as well as CD40 to microglial activation. J Neurosci Res 81(3):436–446

    Article  PubMed  Google Scholar 

  • Das S, Bhargava HN (1985) Effect of lithium treatment on blood pressure and angiotensin-converting enzyme activity in normotensive Wistar-Kyoto and spontaneously hypertensive rats. Arch Int Pharmacodyn Ther 276(1):82–91

    PubMed  CAS  Google Scholar 

  • DeGeorge JJ, Noronha JG, Bell JM, Robinson P, Rapoport SI (1989) Intravenous injection of [1-14C]arachidonate to examine regional brain lipid metabolism in unanesthetized rats. J Neurosci Res 24:413–423

    Article  PubMed  CAS  Google Scholar 

  • DeMar JCJ, Lee HJ, Ma K, Chang L, Bell JM, Rapoport SI, Bazinet RP (2006) Brain elongation of linoleic acid is a negligible source of the arachidonate in brain phospholipids of adult rats. Biochim Biophys Acta 1761(9):1050–1059

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA (2002) The IL-1 family and inflammatory diseases. Clin Exp Rheumatol 20(5 Suppl 27):S1–S13

    PubMed  CAS  Google Scholar 

  • Dou H, Ellison B, Bradley J, Kasiyanov A, Poluektova LY, Xiong H, Maggirwar S, Dewhurst S, Gelbard HA, Gendelman HE (2005) Neuroprotective mechanisms of lithium in murine human immunodeficiency virus-1 encephalitis. J Neurosci 25(37):8375–8385

    Article  PubMed  CAS  Google Scholar 

  • Dzirasa K, Coque L, Sidor MM, Kumar S, Dancy EA, Takahashi JS, McClung CA, Nicolelis MA (2010) Lithium ameliorates nucleus accumbens phase-signaling dysfunction in a genetic mouse model of mania. J Neurosci 30(48):16314–16323

    Article  PubMed  CAS  Google Scholar 

  • Esposito G, Giovacchini G, Liow JS, Bhattacharjee AK, Greenstein D, Schapiro M, Hallett M, Herscovitch P, Eckelman WC, Carson RE, Rapoport SI (2008) Imaging neuroinflammation in Alzheimer’s Disease with radiolabeled arachidonic acid and PET. J Nucl Med 49:1414–1421

    Article  PubMed  CAS  Google Scholar 

  • Everall IP, Bell C, Mallory M, Langford D, Adame A, Rockestein E, Masliah E (2002) Lithium ameliorates HIV-gp120-mediated neurotoxicity. Mol Cell Neurosci 21(3):493–501

    Article  PubMed  CAS  Google Scholar 

  • Fenwick PB, Robertson R (1983) Changes in the visual evoked potential to pattern reversal with lithium medication. Electroencephalogr Clin Neurophysiol 55:538–545

    Article  PubMed  CAS  Google Scholar 

  • Ficek W (1982) Neurosecretory and microstructural changes in the hypothalamus of rats following administration of lithium chloride and 3H-thymidin. Z Mikrosk Anat Forsch 96(4):720–730

    PubMed  CAS  Google Scholar 

  • Fleischman AI, Lenz PH, Bierenbaum ML (1974) Effect of lithium upon lipid metabolism in rats. J Nutr 104(10):1242–1245

    PubMed  CAS  Google Scholar 

  • Foland LC, Altshuler LL, Sugar CA, Lee AD, Leow AD, Townsend J, Narr KL, Asuncion DM, Toga AW, Thompson PM (2008) Increased volume of the amygdala and hippocampus in bipolar patients treated with lithium. Neuroreport 19(2):221–224

    Article  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF (2011) Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br J Psychiatry 198(5):351–356

    Article  PubMed  Google Scholar 

  • Frey BN, Andreazza AC, Cereser KM, Martins MR, Valvassori SS, Reus GZ, Quevedo J, Kapczinski F (2006) Effects of mood stabilizers on hippocampus BDNF levels in an animal model of mania. Life Sci 79(3):281–286

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto T, Morinobu S, Okamoto Y, Kagaya A, Yamawaki S (2001) Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology (Berl) 158(1):100–106

    Article  CAS  Google Scholar 

  • Gao F, Kiesewetter D, Chang L, Ma K, Bell JM, Rapoport SI, Igarashi M (2009) Whole-body synthesis-secretion rates of long-chain n-3 PUFAs from circulating unesterified {alpha}-linolenic acid in unanesthetized rats. J Lipid Res 50(4):749–758

    Article  PubMed  CAS  Google Scholar 

  • Gibbons GF, Wiggins D, Brown AM, Hebbachi AM (2004) Synthesis and function of hepatic very-low-density lipoprotein. Biochem Soc Trans 32(Pt 1):59–64

    Article  PubMed  CAS  Google Scholar 

  • Gray F, Haug H, Chimelli L, Geny C, Gaston A, Scaravilli F, Budka H (1991) Prominent cortical atrophy with neuronal loss as correlate of human immunodeficiency virus encephalopathy. Acta Neuropathol 82(3):229–233

    Article  PubMed  CAS  Google Scholar 

  • Hegerl U, Herrmann WM, Ulrich G, Muller-Oerlinghausen B (1990) Effects of lithium on auditory evoked potentials in healthy subjects. Biol Psychiatry 27:555–560

    Article  PubMed  CAS  Google Scholar 

  • Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN (2003) Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem 278(17):14677–14687

    Article  PubMed  CAS  Google Scholar 

  • Iwahana E, Akiyama M, Miyakawa K, Uchida A, Kasahara J, Fukunaga K, Hamada T, Shibata S (2004) Effect of lithium on the circadian rhythms of locomotor activity and glycogen synthase kinase-3 protein expression in the mouse suprachiasmatic nuclei. Eur J Neurosci 19(8):2281–2287

    Article  PubMed  Google Scholar 

  • Johnson SA, Wang JF, Sun X, McEwen BS, Chattarji S, Young LT (2009) Lithium treatment prevents stress-induced dendritic remodeling in the rodent amygdala. Neuroscience 163(1):34–39

    Article  PubMed  CAS  Google Scholar 

  • Jorda EG, Verdaguer E, Canudas AM, Jimenez A, Garcia de Arriba S, Allgaier C, Pallas M, Camins A (2005) Implication of cyclin-dependent kinase 5 in the neuroprotective properties of lithium. Neuroscience 134(3):1001–1011

    Article  PubMed  CAS  Google Scholar 

  • Jung H, Reme C (1994) Light-evoked arachidonic acid release in the retina: illuminance/duration dependence and the effects of quinacrine, mellitin and lithium. Light-evoked arachidonic acid release. Graefes Arch Clin Exp Ophthalmol 232(3):167–175

    Article  PubMed  CAS  Google Scholar 

  • Kaul M (2009) HIV-1 associated dementia: update on pathological mechanisms and therapeutic approaches. Curr Opin Neurol 22(3):315–320

    Article  PubMed  Google Scholar 

  • Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA (2005) HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 12(Suppl 1):878–892

    Article  PubMed  CAS  Google Scholar 

  • Kessing LV, Sondergard L, Forman JL, Andersen PK (2008) Lithium treatment and risk of dementia. Arch Gen Psychiatry 65(11):1331–1335

    Article  PubMed  Google Scholar 

  • Kim HW, Rapoport SI, Rao JS (2010) Altered expressions of apoptotic factors and synaptic markers in postmortem brain from bipolar disorder patients. Neurobiol Dis 37(3):596–603

    Article  PubMed  CAS  Google Scholar 

  • Lane TE, Buchmeier MJ, Watry DD, Fox HS (1996) Expression of inflammatory cytokines and inducible nitric oxide synthase in brains of SIV-infected rhesus monkeys: applications to HIV-induced central nervous system disease. Mol Med 2(1):27–37

    Article  PubMed  CAS  Google Scholar 

  • Letendre SL, Woods SP, Ellis RJ, Atkinson JH, Masliah E, van den Brande G, Durelle J, Grant I, Everall I (2006) Lithium improves HIV-associated neurocognitive impairment. AIDS 20(14):1885–1888

    Article  PubMed  CAS  Google Scholar 

  • Leyhe T, Eschweiler GW, Stransky E, Gasser T, Annas P, Basun H, Laske C (2009) Increase of BDNF serum concentration in lithium treated patients with early Alzheimer’s disease. J Alzheimers Dis 16(3):649–656

    PubMed  CAS  Google Scholar 

  • Luschen S, Adam D, Ussat S, Kreder D, Schneider-Brachert W, Kronke M, Adam-Klages S (2000) Activation of ERK1/2 and cPLA(2) by the p55 TNF receptor occurs independently of FAN. Biochem Biophys Res Commun 274(2):506–512

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Zhang GY (2003) Lithium reduced N-methyl-D-aspartate receptor subunit 2A tyrosine phosphorylation and its interactions with Src and Fyn mediated by PSD-95 in rat hippocampus following cerebral ischemia. Neurosci Lett 348(3):185–189

    Article  PubMed  CAS  Google Scholar 

  • Maggirwar SB, Tong N, Ramirez S, Gelbard HA, Dewhurst S (1999) HIV-1 Tat-mediated activation of glycogen synthase kinase-3beta contributes to Tat-mediated neurotoxicity. J Neurochem 73(2):578–586

    Article  PubMed  CAS  Google Scholar 

  • Marcoli M, Cervetto C, Paluzzi P, Guarnieri S, Raiteri M, Maura G (2006) Nitric oxide-evoked glutamate release and cGMP production in cerebellar slices: control by presynaptic 5-HT1D receptors. Neurochem Int 49(1):12–19

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallory M, Achim CL, McCutchan JA, Nelson JA, Atkinson JH, Grant I (1997) Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol 42(6):963–972

    Article  PubMed  CAS  Google Scholar 

  • McCarthy MJ, Leckband SG, Kelsoe JR (2010) Pharmacogenetics of lithium response in bipolar disorder. Pharmacogenomics 11(10):1439–1465

    Article  PubMed  CAS  Google Scholar 

  • Montezinho LP, Mork A, Duarte CB, Penschuck S, Geraldes CF, Castro MM (2007) Effects of mood stabilizers on the inhibition of adenylate cyclase via dopamine D(2)-like receptors. Bipolar Disord 9(3):290–297

    Article  PubMed  CAS  Google Scholar 

  • O’Brien WT, Huang J, Buccafusca R, Garskof J, Valvezan AJ, Berry GT, Klein PS (2011) Glycogen synthase kinase-3 is essential for beta-arrestin-2 complex formation and lithium-sensitive behaviors in mice. J Clin Invest 121(9):3756–3762

    Article  PubMed  Google Scholar 

  • O’Donnell KC, Gould TD (2007) The behavioral actions of lithium in rodent models: leads to develop novel therapeutics. Neurosci Biobehav Rev 31(6):932–962

    Article  PubMed  Google Scholar 

  • O'Kelly LI, Hatton GI, Tucker L, Westall D (1965) Water regulation in the rat: heart Rate as a function of hydration, anesthesia, and association with reinforcement. J Comp Physiol Psychol 59:159–165

    Article  PubMed  Google Scholar 

  • Opitz K, Schafer G (1976) The effect of lithium on food intake in rats. Int Pharmacopsychiatry 11(4):197–205

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1987) The rat brain in stereotaxic coordinates, 3rd edn. Academic, New York

    Google Scholar 

  • Peng J, Vigorito M, Liu X, Zhou D, Wu X, Chang SL (2010) The HIV-1 transgenic rat as a model for HIV-1 infected individuals on HAART. J Neuroimmunol 218:94–101

    Article  PubMed  CAS  Google Scholar 

  • Pfeilschifter J, Reme C, Dietrich C (1988) Light-induced phosphoinositide degradation and light-induced structural alterations in the rat retina are enhanced after chronic lithium treatment. Biochem Biophys Res Commun 156:1111–1119

    Article  PubMed  CAS  Google Scholar 

  • Purdon D, Arai T, Rapoport S (1997) No evidence for direct incorporation of esterified palmitic acid from plasma into brain lipids of awake adult rat. J Lipid Res 38(3):526–530

    PubMed  CAS  Google Scholar 

  • Ramadan E, Rosa AO, Chang L, Chen M, Rapoport SI, Basselin M (2010) Extracellular-derived calcium does not initiate in vivo neurotransmission involving docosahexaenoic acid. J Lipid Res 51(8):2334–2340

    Article  PubMed  CAS  Google Scholar 

  • Ramadan E, Basselin M, Rapoport SI (2012) Chronic lithium administration dampens the upregulated brain arachidonic acid metabolism in HIV-1 Tg rats. Paper presented at the 43rd Ann Meeting Amer Soc Neurochemistry, Baltimore, MD, March 3-7, 2012. Abtract PTW03-05

  • Rao JS, Rapoport SI, Bosetti F (2005) Decrease in the AP-2 DNA-binding activity and in the protein expression of AP-2 alpha and AP-2 beta in frontal cortex of rats treated with lithium for 6 weeks. Neuropsychopharmacology 30:2006–2013

    Article  PubMed  CAS  Google Scholar 

  • Rao JS, Lee HJ, Rapoport SI, Bazinet RP (2008) Mode of action of mood stabilizers: is the arachidonic acid cascade a common target? Mol Psychiatry 13(6):585–596

    Article  PubMed  CAS  Google Scholar 

  • Rao JS, Harry GJ, Rapoport SI, Kim HW (2010) Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry 15(4):384–392

    Article  PubMed  CAS  Google Scholar 

  • Rao JS, Kim HW, Kellom M, Greenstein D, Chen M, Kraft AD, Harry GJ, Rapoport SI, Basselin M (2011) Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins in brain of HIV-1 transgenic rat. J Neuroinflammation 8(1):101, Erratum in: J Neuroinflammation (2012) 2019:2019

    Article  PubMed  CAS  Google Scholar 

  • Rapoport SI (2005) In vivo approaches and rationale for quantifying kinetics and imaging brain lipid metabolic pathways. Prostaglandins Other Lipid Mediat 77(1–4):185–196

    Article  PubMed  CAS  Google Scholar 

  • Reid W, Sadowska M, Denaro F, Rao S, Foulke J Jr, Hayes N, Jones O, Doodnauth D, Davis H, Sill A, O'Driscoll P, Huso D, Fouts T, Lewis G, Hill M, Kamin-Lewis R, Wei C, Ray P, Gallo RC, Reitz M, Bryant J (2001) An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci U S A 98(16):9271–9276

    Article  PubMed  CAS  Google Scholar 

  • Rintala J, Seemann R, Chandrasekaran K, Rosenberger TA, Chang L, Contreras MA, Rapoport SI, Chang MCJ (1999) 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. Neuroreport 10:3887–3890

    Article  PubMed  CAS  Google Scholar 

  • Robinson PJ, Noronha J, DeGeorge JJ, Freed LM, Nariai T, Rapoport SI (1992) A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: Review and critical analysis. Brain Res Brain Res Rev 17:187–214

    Article  PubMed  CAS  Google Scholar 

  • Schifitto G, Zhong J, Gill D, Peterson DR, Gaugh MD, Zhu T, Tivarus M, Cruttenden K, Maggirwar SB, Gendelman HE, Dewhurst S, Gelbard HA (2009) Lithium therapy for human immunodeficiency virus type 1-associated neurocognitive impairment. J Neurovirol 15(2):176–186

    Article  PubMed  CAS  Google Scholar 

  • Schouten J, Cinque P, Gisslen M, Reiss P, Portegies P (2011) HIV-1 infection and cognitive impairment in the cART era: a review. AIDS 25(5):561–575

    Article  PubMed  Google Scholar 

  • Sigal A, Kim JT, Balazs AB, Dekel E, Mayo A, Milo R, Baltimore D (2011) Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477(7362):95–98

    Article  PubMed  CAS  Google Scholar 

  • Six DA, Dennis EA (2000) The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim Biophys Acta 1488(1–2):1–19

    PubMed  CAS  Google Scholar 

  • Sy M, Kitazawa M, Medeiros R, Whitman L, Cheng D, Lane TE, Laferla FM (2011) Inflammation induced by infection potentiates tau pathological features in transgenic mice. Am J Pathol 178(6):2811–2822

    Article  PubMed  CAS  Google Scholar 

  • Tabachnick BG, Fidell LS (2001) Computer-assisted research design and analysis. Allyn and Bacon, Boston, pp 184–188

    Google Scholar 

  • Ulrich G, Herrmann WM, Hegerl U, Muller-Oerlinghausen B (1990) Effect of lithium on the dynamics of electroencephalographic vigilance in healthy subjects. J Affect Disord 20(1):19–25

    Article  PubMed  CAS  Google Scholar 

  • Varatharajan L, Thomas SA (2009) The transport of anti-HIV drugs across blood-CNS interfaces: summary of current knowledge and recommendations for further research. Antiviral Res 82(2):A99–A109

    Article  PubMed  CAS  Google Scholar 

  • Walz JC, Frey BN, Andreazza AC, Cereser KM, Cacilhas AA, Valvassori SS, Quevedo J, Kapczinski F (2008) Effects of lithium and valproate on serum and hippocampal neurotrophin-3 levels in an animal model of mania. J Psychiatr Res 42(5):416–421

    Article  PubMed  Google Scholar 

  • Wang Y, White MG, Akay C, Chodroff RA, Robinson J, Lindl KA, Dichter MA, Qian Y, Mao Z, Kolson DL, Jordan-Sciutto KL (2007) Activation of cyclin-dependent kinase 5 by calpains contributes to human immunodeficiency virus-induced neurotoxicity. J Neurochem 103(2):439–455

    Article  PubMed  CAS  Google Scholar 

  • Yadav A, Collman RG (2009) CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. J Neuroimmune Pharmacol 4(4):430–447

    Article  PubMed  Google Scholar 

  • Yu F, Wang Z, Tchantchou F, Chiu CT, Zhang Y, Chuang DM (2012) Lithium ameliorates neurodegeneration, suppresses neuroinflammation, and improves behavioral performance in a mouse model of traumatic brain injury. J Neurotrauma 29(2):362–374

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported entirely by the Intramural Research Program of the National Institute on Aging, NIH. No author has a financial or other conflict of interest related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireille Basselin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramadan, E., Basselin, M., Chang, L. et al. Chronic Lithium Feeding Reduces Upregulated Brain Arachidonic Acid Metabolism in HIV-1 Transgenic Rat. J Neuroimmune Pharmacol 7, 701–713 (2012). https://doi.org/10.1007/s11481-012-9381-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-012-9381-0

Keywords

Navigation