Skip to main content

Advertisement

Log in

Identification of SNF2h, a Chromatin-Remodeling Factor, as a Novel Binding Protein of Vpr of Human Immunodeficiency Virus Type 1

  • BRIEF REPORT
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Vpr, an accessory gene of human immunodeficiency virus type 1, encodes a virion-associated nuclear protein that plays an important role in the primary viral infection of resting macrophages. It has a variety of biological functions, including roles in a cell cycle abnormality at G2/M phase, apoptosis, nuclear transfer of preintegration complex, and DNA double-strand breaks (DSBs), some of which depend on its association with the chromatin of the host cells. Given that DSB signals are postulated to be a positive factor in the viral infection, understanding the mode of chromatin recruitment of Vpr is important. Here, we identified SNF2h, a chromatin-remodeling factor, as a novel binding partner of Vpr involved in its chromatin recruitment. When endogenous SNF2h protein was extensively downregulated by SNF2h small interfering RNA (siRNA), the amount of Vpr loaded on chromatin decreased to about 30% of the control level. Biochemical analysis using a mutant Vpr suggested that Vpr binds SNF2h via HFRIG (amino acids 71–75 depicted by single letters) and the Vpr mutant lacking this motif lost the activity to induce DSB-dependent signals. Consistently, Vpr-induced DSBs were attenuated by extensive downregulaion of endogenous SNF2h. Based on these data, we discuss the role of DSB and DSB signals in the viral infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Andersen JL, Le Rouzic E, Planelles V (2008) HIV-1 Vpr: mechanisms of G2 arrest and apoptosis. Exp Mol Pathol. 85:2–10

    Google Scholar 

  • Ariumi Y, Trono D (2006) Ataxia–telangiectasia-mutated (ATM) protein can enhance human immunodeficiency virus type 1 replication by stimulating Rev function. J Virol 80:2445–2452

    Article  PubMed  CAS  Google Scholar 

  • Ariumi Y, Turelli P, Masutani M, Trono D (2005) DNA damage sensors ATM, ATR, DNA-PKcs, and PARP-1 are dispensable for human immunodeficiency virus type 1 integration. J Virol 79:2973–2978

    Article  PubMed  CAS  Google Scholar 

  • Baekelandt V, Claeys A, Cherepanov P, De Clercq E, De Strooper B, Nuttin B, Debyser Z (2000) DNA-dependent protein kinase is not required for efficient lentivirus integration. J Virol 74:11278–11285

    Article  PubMed  CAS  Google Scholar 

  • Collins N, Poot RA, Kukimoto I, Garcia-Jimenez C, Dellaire G, Varga-Weisz PD (2002) An ACF1–ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat Genet 32:627–632

    Article  PubMed  CAS  Google Scholar 

  • Daniel R, Katz RA, Skalka AM (1999) A role for DNA-PK in retroviral DNA integration. Science 284:644–647

    Article  PubMed  CAS  Google Scholar 

  • Daniel R, Kao G, Taganov K, Greger JG, Favorova O, Merkel G, Yen TJ, Katz RA, Skalka AM (2003) Evidence that the retroviral DNA integration process triggers an ATR-dependent DNA damage response. Proc Natl Acad Sci USA 100:4778–4783

    Article  PubMed  CAS  Google Scholar 

  • Daniel R, Greger JG, Katz RA, Taganov KD, Wu X, Kappes JC, Skalka AM (2004) Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway. J Virol 78:8573–8581

    Article  PubMed  CAS  Google Scholar 

  • Daniel R, Marusich E, Argyris E, Zhao RY, Skalka AM, Pomerantz RJ (2005) Caffeine inhibits human immunodeficiency virus type 1 transduction of nondividing cells. J Virol 79:2058–2065

    Article  PubMed  CAS  Google Scholar 

  • Dehart JL, Andersen JL, Zimmerman ES, Ardon O, An DS, Blackett J, Kim B, Planelles V (2005) The ataxia telangiectasia-mutated and Rad3-related protein is dispensable for retroviral integration. J Virol 79:1389–1396

    Article  PubMed  CAS  Google Scholar 

  • Fairbairn DW, Olive PL, O'Neill KL (1995) The comet assay: a comprehensive review. Mutat Res 339:37–59

    PubMed  CAS  Google Scholar 

  • Felzien LK, Woffendin C, Hottiger MO, Subbramanian RA, Cohen EA, Nabel GJ (1998) HIV transcriptional activation by the accessory protein, VPR, is mediated by the p300 co-activator. Proc Natl Acad Sci USA 95:5281–5286

    Google Scholar 

  • Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R, Gallant J, Markowitz M, Ho DD, Richman DD, Siliciano RF (1997) Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278:1295–1300

    Article  PubMed  CAS  Google Scholar 

  • Frulloni L, Lunardi C, Simone R, Dolcino M, Scattolini C, Falconi M, Benini L, Vantini I, Corrocher R, Puccetti A (2009) Identification of a novel antibody associated with autoimmune pancreatitis. N Engl J Med 361:2135–2142

    Google Scholar 

  • Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138

    Article  PubMed  CAS  Google Scholar 

  • Goh WC, Rogel ME, Kinsey CM, Michael SF, Fultz PN, Nowak MA, Hahn BH, Emerman M (1998) HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nat Med 4:65–71

    Article  PubMed  CAS  Google Scholar 

  • Hakimi MA, Bochar DA, Schmiesing JA, Dong Y, Barak OG, Speicher DW, Yokomori K, Shiekhattar R (2002) A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418:994–998

    Article  PubMed  CAS  Google Scholar 

  • He J, Choe S, Walker R, Di Marzio P, Morgan DO, Landau NR (1995) Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 69:6705–6711

    PubMed  CAS  Google Scholar 

  • Heinzinger NK, Bukinsky MI, Haggerty SA, Ragland AM, Kewalramani V, Lee MA, Gendelman HE, Ratner L, Stevenson M, Emerman M (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 91:7311–7315

    Article  PubMed  CAS  Google Scholar 

  • Hoshino S, Sun B, Konishi M, Shimura M, Segawa T, Hagiwara Y, Koyanagi Y, Iwamoto A, Mimaya J, Terunuma H, Kano S, Ishizaka Y (2007) Vpr in plasma of HIV type 1-positive patients is correlated with the HIV type 1 RNA titers. AIDS Res Hum Retroviruses 23:391–397

    Article  PubMed  CAS  Google Scholar 

  • Hoshino S, Konishi M, Mori M, Shimura M, Nishitani C, Kuroki Y, Koyanagi Y, Kano S, Itabe H, Ishizaka Y (2010) HIV-1 Vpr induces TLR4/MyD88-mediated IL-6 production and reactivates viral production from latency. J Leukoc Biol 87:1133–1143

    Article  PubMed  CAS  Google Scholar 

  • Izuta H, Ikeno M, Suzuki N, Tomonaga T, Nozaki N, Obuse C, Kisu Y, Goshima N, Nomura F, Nomura N, Yoda K (2006) Comprehensive analysis of the ICEN (interphase centromere complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11:673–684

    Article  PubMed  CAS  Google Scholar 

  • Kino T, Gragerov A, Slobodskaya O, Tsopanomichalou M, Chrousos GP, Pavlakis GN (2002) Human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr induces transcription of the HIV-1 and glucocorticoid-responsive promoters by binding directly to p300/CBP coactivators. J Virol 76:9724–9734

    Article  PubMed  CAS  Google Scholar 

  • Lai M, Zimmerman ES, Planelles V, Chen J (2005) Activation of the ATR pathway by human immunodeficiency virus type 1 Vpr involves its direct binding to chromatin in vivo. J Virol 79:15443–15451

    Article  PubMed  CAS  Google Scholar 

  • Lau A, Swinbank KM, Ahmed PS, Taylor DL, Jackson SP, Smith GC, O'Connor MJ (2005) Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase. Nat Cell Biol 7:493–500

    Article  PubMed  Google Scholar 

  • Le Rouzic E, Belaidouni N, Estrabaud E, Morel M, Rain JC, Transy C, Margottin-Goguet F (2007) HIV1 Vpr arrests the cell cycle by recruiting DCAF1/VprBP, a receptor of the Cul4-DDB1 ubiquitin ligase. Cell Cycle 6:182–188

    Article  PubMed  Google Scholar 

  • Lusser A, Kadonaga JT (2003) Chromatin remodeling by ATP-dependent molecular machines. Bioessays 25:1192–1200

    Article  PubMed  CAS  Google Scholar 

  • Nakai-Murakami C, Shimura M, Kinomoto M, Takizawa Y, Tokunaga K, Taguchi T, Hoshino S, Miyagawa K, Sata T, Kurumizaka H, Yuo A, Ishizaka Y (2007) HIV-1 Vpr induces ATM-dependent cellular signal with enhanced homologous recombination. Oncogene 26:477–486

    Article  PubMed  CAS  Google Scholar 

  • Nakai-Murakami C, Minemoto Y, Ishizaka Y (2009) Vpr-induced DNA double-strand breaks: molecular mechanism and biological relevance. Curr HIV Res 7:109–113

    Article  PubMed  CAS  Google Scholar 

  • Nitahara-Kasahara Y, Kamata M, Yamamoto T, Zhang X, Miyamoto Y, Muneta K, Iijima S, Yoneda Y, Tsunetsugu-Yokota Y, Aida Y (2007) Novel nuclear import of Vpr promoted by importin alpha is crucial for human immunodeficiency virus type 1 replication in macrophages. J Virol 81:5284–5293

    Article  PubMed  CAS  Google Scholar 

  • Niwa H, Abe K, Kunisada T, Yamamura K (1996) Cell-cycle-dependent expression of the STK-1 gene encoding a novel murine putative protein kinase. Gene 169:197–201

    Article  PubMed  CAS  Google Scholar 

  • Nunnari G, Argyris E, Fang J, Mehlman KE, Pomerantz RJ, Daniel R (2005) Inhibition of HIV-1 replication by caffeine and caffeine-related methylxanthines. Virology 335:177–184

    Article  PubMed  CAS  Google Scholar 

  • Peterson PK, Gekker G, Chao CC, Schut R, Verhoef J, Edelman CK, Erice A, Balfour HH Jr (1992) Cocaine amplifies HIV-1 replication in cytomegalovirus-stimulated peripheral blood mononuclear cell cocultures. J Immunol 149:676–680

    PubMed  CAS  Google Scholar 

  • Poot RA, Bozhenok L, van den Berg DL, Steffensen S, Ferreira F, Grimaldi M, Gilbert N, Ferreira J, Varga-Weisz PD (2004) The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat Cell Biol 6:1236–1244

    Article  PubMed  CAS  Google Scholar 

  • Porcedda P, Turinetto V, Brusco A, Cavalieri S, Lantelme E, Orlando L, Ricardi U, Amoroso A, Gregori D, Giachino C (2008) A rapid flow cytometry test based on histone H2AX phosphorylation for the sensitive and specific diagnosis of ataxia telangiectasia. Cytom A 73:508–516

    Article  Google Scholar 

  • Racki LR, Narlikar GJ (2008) ATP-dependent chromatin remodeling enzymes: two heads are not better, just different. Curr Opin Genet Dev 18:137–144

    Article  PubMed  CAS  Google Scholar 

  • Sakurai Y, Komatsu K, Agematsu K, Matsuoka M (2009) DNA double strand break repair enzymes function at multiple steps in retroviral infection. Retrovirology 6:114

    Article  PubMed  Google Scholar 

  • Shimura M, Tanaka Y, Nakamura S, Minemoto Y, Yamashita K, Hatake K, Takaku F, Ishizaka Y (1999a) Micronuclei formation and aneuploidy induced by Vpr, an accessory gene of human immunodeficiency virus type 1. FASEB J 13:621–637

    PubMed  CAS  Google Scholar 

  • Shimura M, Onozuka Y, Yamaguchi T, Hatake K, Takaku F, Ishizaka Y (1999b) Micronuclei formation with chromosome breaks and gene amplification caused by Vpr, an accessory gene of human immunodeficiency virus. Cancer Res 59:2259–2264

    PubMed  CAS  Google Scholar 

  • Skalka AM, Katz RA (2005) Retroviral DNA integration and the DNA damage response. Cell Death Differ 12(Suppl 1):971–997

    Article  PubMed  CAS  Google Scholar 

  • Smith JA, Daniel R (2011) Up-regulation of HIV-1 transduction in nondividing cells by double-strand DNA break-inducing agents. Biotechnol Lett 33:243–252

    Article  PubMed  CAS  Google Scholar 

  • Smith JA, Nunnari G, Preuss M, Pomerantz RJ, Daniel R (2007) Pentoxifylline suppresses transduction by HIV-1-based vectors. Intervirology 50:377–386

    Article  PubMed  CAS  Google Scholar 

  • Smith JA, Wang FX, Zhang H, Wu KJ, Williams KJ, Daniel R (2008) Evidence that the Nijmegen breakage syndrome protein, an early sensor of double-strand DNA breaks (DSB), is involved in HIV-1 post-integration repair by recruiting the ataxia telangiectasia-mutated kinase in a process similar to, but distinct from, cellular DSB repair. Virol J 5:11

    Article  PubMed  Google Scholar 

  • Suzuki K, Okada H, Yamauchi M, Oka Y, Kodama S, Watanabe M (2006) Qualitative and quantitative analysis of phosphorylated ATM foci induced by low-dose ionizing radiation. Radiat Res 165:499–504

    Google Scholar 

  • Suzuki T, Yamamoto N, Nonaka M, Hashimoto Y, Matsuda G, Takeshima SN, Matsuyama M, Igarashi T, Miura T, Tanaka R, Kato S, Aida Y (2009) Inhibition of human immunodeficiency virus type 1 (HIV-1) nuclear import via Vpr–Importin alpha interactions as a novel HIV-1 therapy. Biochem Biophys Res Commun 380:838–843

    Article  PubMed  CAS  Google Scholar 

  • Tachiwana H, Shimura M, Nakai-Murakami C, Tokunaga K, Takizawa Y, Sata T, Kurumizaka H, Ishizaka Y (2006) HIV-1 Vpr induces DNA double-strand breaks. Cancer Res 66:627–631

    Article  PubMed  CAS  Google Scholar 

  • van Zon W, Ogink J, ter Riet B, Medema RH, te Riele H, Wolthuis RM (2010) The APC/C recruits cyclin B1-Cdk1-Cks in prometaphase before D box recognition to control mitotic exit. J Cell Biol 190:587–602

    Article  PubMed  Google Scholar 

  • Vodicka MA, Koepp DM, Silver PA, Emerman M (1998) HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes Dev 12:175–185

    Article  PubMed  CAS  Google Scholar 

  • Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA, Richman DD (1997) Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278:1291–1295

    Article  PubMed  CAS  Google Scholar 

  • Yang YX, Guen V, Richard J, Cohen EA, Berthoux L (2009) Cell context-dependent involvement of ATR in early stages of retroviral replication. Virology 396:272–279

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Hiroshi Sasaki (Jikei Medical School) for providing us with 2008 cells. This work was supported in parts by Grants-in-Aid for Research from the Ministry of Health, Labour and Welfare of Japan and for Research on Publicly Essential Drugs and Medical Devices from Japan Health Sciences Foundation Research.

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihito Ishizaka.

Additional information

Daiki Taneichi and Kenta Iijima contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Effects of SNF2h siRNA on Vpr-induced phosphorylation of ATM. MIT-23 cells were transfected with SNF2h (lower panels) or control (upper panels) siRNAs. DOX was added after 48 h, and an immunohistochemical analysis was carried out after 24 h of the Dox addition. Arrowhead indicates pATM-foci positive cells. Scale bar indicates 10 μm (JPEG 71 kb)

Supplementary Figure 2

rVpr induces focus formation of pATM in resting cells under the downregulated expression of endogenous SNF2h. Serum-starved TIG-3 cells with SNF2h (lower panels) or control (upper panels) siRNAs were further treated with 100 ng/mL of rVpr. Left panel, immunohistochemical analysis of pATM. Arrowhead indicates cells positive for pATM foci (pATM-foci positive cells). Scale bar indicates 10 μm. Right panel, effects of SNF2h siRNA on rVpr-induced focus formation of pATM. Numbers of pATM-foci positive cells were counted three sets of at least 300 cells in each sample and subjected to statistical analysis (a Mann–Whitney test: experiments were performed independently at three times). Mean numbers of pATM-positive cells ± standard deviation were shown. No inhibitory effects of SNF2h siRNA on rVpr-induced DSB were observed (PPT 1143 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taneichi, D., Iijima, K., Doi, A. et al. Identification of SNF2h, a Chromatin-Remodeling Factor, as a Novel Binding Protein of Vpr of Human Immunodeficiency Virus Type 1. J Neuroimmune Pharmacol 6, 177–187 (2011). https://doi.org/10.1007/s11481-011-9276-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-011-9276-5

Keywords

Navigation