Skip to main content

Advertisement

Log in

Activation of Egr-1 Expression in Astrocytes by HIV-1 Tat: New Insights into Astrocyte-Mediated Tat Neurotoxicity

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus type 1 (HIV-1) Tat plays an important role in HIV-associated neuropathogenesis; the underlying mechanisms are still evolving. We have recently shown that HIV-1 Tat induces expression of glial fibrillary acidic protein (GFAP), a characteristic of HIV-1 infection of the central nervous system. We have also shown that the Tat-induced GFAP expression in astrocytes is regulated by p300 and that deletion of the early growth response 1 (Egr-1) cis-transacting element within the p300 promoter abolishes Tat-induced GFAP expression. In this study, we further examined the relationship between Tat and Egr-1 in astrocytes. We found increased Egr-1 protein expression in Tat-expressing human astrocytoma cells and mouse primary astrocytes. Using the Egr-1 promoter-driven firefly luciferase reporter gene assay and the site-directed mutagenesis, we demonstrated that Tat increased Egr-1 expression by transactivating the Egr-1 promoter and involving specific serum response elements within the promoter. Consistent with these data, we showed that Tat transactivation of the Egr-1 promoter was abrogated when astrocytes were cultured in serum-reduced media. Taken together, these results reveal that Tat directly transactivates Egr-1 expression and suggest that Tat interaction with Egr-1 is probably one of the very upstream molecular events that initiate Tat-induced astrocyte dysfunction and subsequent Tat neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aicher WK, Sakamoto KM, Hack A, Eibel H (1999) Analysis of functional elements in the human Egr-1 gene promoter. Rheumatol Int 18:207–214

    Article  CAS  PubMed  Google Scholar 

  • Beck H, Semisch M, Culmsee C, Plesnila N, Hatzopoulos AK (2008) Egr-1 regulates expression of the glial scar component phosphacan in astrocytes after experimental stroke. Am J Pathol 173:77–92

    Article  CAS  PubMed  Google Scholar 

  • Bell JE, Anthony IC, Simmonds P (2006) Impact of HIV on regional & cellular organisation of the brain. Curr HIV Res 4:249–257

    Article  CAS  PubMed  Google Scholar 

  • Bonifaci N, Sitia R, Rubartelli A (1995) Nuclear translocation of an exogenous fusion protein containing HIV Tat requires unfolding. AIDS 9:995–1000

    Article  CAS  PubMed  Google Scholar 

  • Bratanich AC, Liu C, McArthur JC, Fudyk T, Glass JD, Mittoo S, Klassen GA, Power C (1998) Brain-derived HIV-1 tat sequences from AIDS patients with dementia show increased molecular heterogeneity. J Neurovirol 4:387–393 (in process citation)

    Article  CAS  PubMed  Google Scholar 

  • Brew BJ (2009) HIV, the brain, children, HAART and ‘neuro-HAART’: a complex mix. AIDS 23:1909–1910

    Article  PubMed  Google Scholar 

  • Cai Y, Liu Y, Zhang X (2006) Induction of transcription factor Egr-1 gene expression in astrocytoma cells by murine coronavirus infection. Virology 355:152–163

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Mayne M, Power C, Nath A (1997) The Tat protein of HIV-1 induces tumor necrosis factor-alpha production. Implications for HIV-1-associated neurological diseases. J Biol Chem 272:22385–22388

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Nath A, Knudsen B, Hochman S, Geiger JD, Ma M, Magnuson DS (1998) Neuronal excitatory properties of human immunodeficiency virus type 1 Tat protein. Neuroscience 82:97–106

    Article  CAS  PubMed  Google Scholar 

  • Cohen RA, Gongvatana A (2009) HIV-associated brain dysfunction in the era of HAART: reasons for hope, but continued concern. Neurology 73:338–339

    Article  PubMed  Google Scholar 

  • Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci USA 95:3117–3121

    Article  CAS  PubMed  Google Scholar 

  • Cupp C, Taylor JP, Khalili K, Amini S (1993) Evidence for stimulation of the transforming growth factor beta 1 promoter by HIV-1 Tat in cells derived from CNS. Oncogene 8:2231–2236

    CAS  PubMed  Google Scholar 

  • Darbinian N, Darbinyan A, Czernik M, Peruzzi F, Khalili K, Reiss K, Gordon J, Amini S (2008) HIV-1 Tat inhibits NGF-induced Egr-1 transcriptional activity and consequent p35 expression in neural cells. J Cell Physiol 216:128–134

    Article  CAS  PubMed  Google Scholar 

  • Darbinian-Sarkissian N, Czernik M, Peruzzi F, Gordon J, Rappaport J, Reiss K, Khalili K, Amini S (2006) Dysregulation of NGF-signaling and Egr-1 expression by Tat in neuronal cell culture. J Cell Physiol 208:506–515

    Article  CAS  PubMed  Google Scholar 

  • Del Valle L, Pina-Oviedo S (2006) HIV disorders of the brain: pathology and pathogenesis. Front Biosci 11:718–732

    Article  PubMed  Google Scholar 

  • Dron M, Hameau L, Benboudjema L, Guymarho J, Cajean-Feroldi C, Rizza P, Godard C, Jasmin C, Tovey MG, Lang MC (1999) Cloning of a long HIV-1 readthrough transcript and detection of an increased level of early growth response protein-1 (Egr-1) mRNA in chronically infected U937 cells. Arch Virol 144:19–28

    Article  CAS  PubMed  Google Scholar 

  • El-Hage N, Gurwell JA, Singh IN, Knapp PE, Nath A, Hauser KF (2005) Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat. Glia 50:91–106

    Article  PubMed  Google Scholar 

  • Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8:33–44

    Article  CAS  PubMed  Google Scholar 

  • Eugenin EA, King JE, Nath A, Calderon TM, Zukin RS, Bennett MV, Berman JW (2007) HIV-tat induces formation of an LRP-PSD-95–NMDAR-nNOS complex that promotes apoptosis in neurons and astrocytes. Proc Natl Acad Sci USA 104:3438–3443

    Article  CAS  PubMed  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  CAS  PubMed  Google Scholar 

  • Gineitis D, Treisman R (2001) Differential usage of signal transduction pathways defines two types of serum response factor target gene. J Biol Chem 276:24531–24539

    Article  CAS  PubMed  Google Scholar 

  • Gorry P, Purcell D, Howard J, McPhee D (1998) Restricted HIV-1 infection of human astrocytes: potential role of nef in the regulation of virus replication. J Neurovirol 4:377–386

    Article  CAS  PubMed  Google Scholar 

  • Green M, Ishino M, Loewenstein PM (1989) Mutational analysis of HIV-1 Tat minimal domain peptides: identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression. Cell 58:215–223

    Article  CAS  PubMed  Google Scholar 

  • Herbison CE, Sayer DC, Bellgard M, Allcock RJ, Christiansen FT, Price P (1999) Structure and polymorphism of two stress-activated protein kinase genes centromeric of the MHC: SAPK2a and SAPK4. DNA Seq 10:229–243

    CAS  PubMed  Google Scholar 

  • Hofman FM, Wright AD, Dohadwala MM, Wong-Staal F, Walker SM (1993) Exogenous tat protein activates human endothelial cells. Blood 82:2774–2780

    CAS  PubMed  Google Scholar 

  • Hofman FM, Dohadwala MM, Wright AD, Hinton DR, Walker SM (1994) Exogenous tat protein activates central nervous system-derived endothelial cells. J Neuroimmunol 54:19–28

    Article  CAS  PubMed  Google Scholar 

  • Hofman FM, Chen P, Incardona F, Zidovetzki R, Hinton DR (1999) HIV-1 tat protein induces the production of interleukin-8 by human brain-derived endothelial cells. J Neuroimmunol 94:28–39

    Article  CAS  PubMed  Google Scholar 

  • James AB, Conway AM, Thiel G, Morris BJ (2004) Egr-1 modulation of synapsin I expression: permissive effect of forskolin via cAMP. Cell Signal 16:1355–1362

    Article  CAS  PubMed  Google Scholar 

  • Jones M, Olafson K, Del Bigio MR, Peeling J, Nath A (1998) Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. J Neuropathol Exp Neurol 57:563–570

    Article  CAS  PubMed  Google Scholar 

  • Khachigian LM, Collins T (1997) Inducible expression of Egr-1-dependent genes. A paradigm of transcriptional activation in vascular endothelium. Circ Res 81:457–461

    CAS  PubMed  Google Scholar 

  • Kim BO, Liu Y, Ruan Y, Xu ZC, Schantz L, He JJ (2003) Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am J Pathol 162:1693–1707

    CAS  PubMed  Google Scholar 

  • Kolson DL, Buchhalter J, Collman R, Hellmig B, Farrell CF, Debouck C, Gonzalez-Scarano F (1993) HIV-1 Tat alters normal organization of neurons and astrocytes in primary rodent brain cell cultures: RGD sequence dependence. AIDS Res Hum Retroviruses 9:677–685

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Hatch WC, Liu W, Brosnan CF, Dickson DW (1993) Productive infection of human fetal microglia in vitro by HIV-1. Ann N Y Acad Sci 693:314–316

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, Moir RD, Nath A, He JJ (2000) Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6:1380–1387

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liu H, Kim BO, Gattone VH, Li J, Nath A, Blum J, He JJ (2004) CD4-independent infection of astrocytes by human immunodeficiency virus type 1: requirement for the human mannose receptor. J Virol 78:4120–4133

    Article  CAS  PubMed  Google Scholar 

  • Mann DA, Frankel AD (1991) Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J 10:1733–1739

    CAS  PubMed  Google Scholar 

  • Mayer SI, Rossler OG, Endo T, Charnay P, Thiel G (2009) Epidermal-growth-factor-induced proliferation of astrocytes requires Egr transcription factors. J Cell Sci 122:3340–3350

    Article  CAS  PubMed  Google Scholar 

  • Milani D, Zauli G, Neri LM, Marchisio M, Previati M, Capitani S (1993) Influence of the human immunodeficiency virus type 1 Tat protein on the proliferation and differentiation of PC12 rat pheochromocytoma cells. J Gen Virol 74:2587–2594

    Article  CAS  PubMed  Google Scholar 

  • Mittelbronn M, Harter P, Warth A, Lupescu A, Schilbach K, Vollmann H, Capper D, Goeppert B, Frei K, Bertalanffy H, Weller M, Meyermann R, Lang F, Simon P (2009) EGR-1 is regulated by N-methyl-d-aspartate-receptor stimulation and associated with patient survival in human high grade astrocytomas. Brain Pathol 19:195–204

    Article  CAS  PubMed  Google Scholar 

  • Nath A, Conant K, Chen P, Scott C, Major EO (1999) Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J Biol Chem 274:17098–17102

    Article  CAS  PubMed  Google Scholar 

  • Parmentier HK, van Wichen DF, Meyling FH, Goudsmit J, Schuurman HJ (1992) Epitopes of human immunodeficiency virus regulatory proteins tat, nef, and rev are expressed in normal human tissue. Am J Pathol 141:1209–1216

    CAS  PubMed  Google Scholar 

  • Peruzzi F (2006) The multiple functions of HIV-1 Tat: proliferation versus apoptosis. Front Biosci 11:708–717

    Article  CAS  PubMed  Google Scholar 

  • Petersohn D, Schoch S, Brinkmann DR, Thiel G (1995) The human synapsin II gene promoter. Possible role for the transcription factor zif268/egr-1, polyoma enhancer activator 3, and AP2. J Biol Chem 270:24361–24369

    Article  CAS  PubMed  Google Scholar 

  • Price RW, Brew B, Sidtis J, Rosenblum M, Scheck AC, Cleary P (1988) The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science 239:586–592

    Article  CAS  PubMed  Google Scholar 

  • Romagnoli L, Sariyer IK, Tung J, Feliciano M, Sawaya BE, Del Valle L, Ferrante P, Khalili K, Safak M, White MK (2008) Early growth response-1 protein is induced by JC virus infection and binds and regulates the JC virus promoter. Virology 375:331–341

    Article  CAS  PubMed  Google Scholar 

  • Sabatier JM, Vives E, Mabrouk K, Benjouad A, Rochat H, Duval A, Hue B, Bahraoui E (1991) Evidence for neurotoxic activity of tat from human immunodeficiency virus type 1. J Virol 65:961–967

    CAS  PubMed  Google Scholar 

  • Sacktor N (2002) The epidemiology of human immunodeficiency virus-associated neurological disease in the era of highly active antiretroviral therapy. J Neurovirol 8(Suppl 2):115–121

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Sharer LR, Epstein LG, Michaels J, Mintz M, Louder M, Golding K, Cvetkovich TA, Blumberg BM (1994) Overexpression of nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues. Neurology 44:474–481

    CAS  PubMed  Google Scholar 

  • Schwachtgen JL, Campbell CJ, Braddock M (2000) Full promoter sequence of human early growth response factor-1 (Egr-1): demonstration of a fifth functional serum response element. DNA Seq 10:429–432

    CAS  PubMed  Google Scholar 

  • Schweighardt B, Atwood WJ (2001) HIV type 1 infection of human astrocytes is restricted by inefficient viral entry. AIDS Res Hum Retroviruses 17:1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Shin SY, Song H, Kim CG, Choi YK, Lee KS, Lee SJ, Lee HJ, Lim Y, Lee YH (2009) Egr-1 is necessary for fibroblast growth factor-2-induced transcriptional activation of the glial cell line-derived neurotrophic factor in murine astrocytes. J Biol Chem 284:30583–30593

    Article  CAS  PubMed  Google Scholar 

  • Tornatore C, Chandra R, Berger JR, Major EO (1994) HIV-1 infection of subcortical astrocytes in the pediatric central nervous system. Neurology 44:481–487

    CAS  PubMed  Google Scholar 

  • Treisman R (1992) The serum response element. Trends Biochem Sci 17:423–426

    Article  CAS  PubMed  Google Scholar 

  • Viscidi RP, Mayur K, Lederman HM, Frankel AD (1989) Inhibition of antigen-induced lymphocyte proliferation by Tat protein from HIV-1. Science 246:1606–1608

    Article  CAS  PubMed  Google Scholar 

  • Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H, Debatin KM, Krammer PH (1995a) Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375:497–500

    Article  CAS  PubMed  Google Scholar 

  • Westendorp MO, Shatrov VA, Schulze-Osthoff K, Frank R, Kraft M, Los M, Krammer PH, Droge W, Lehmann V (1995b) HIV-1 Tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering the cellular redox state. EMBO J 14:546–554

    CAS  PubMed  Google Scholar 

  • Williams R, Yao H, Dhillon NK, Buch SJ (2009) HIV-1 Tat co-operates with IFN-gamma and TNF-alpha to increase CXCL10 in human astrocytes. PLoS ONE 4:e5709

    Article  PubMed  Google Scholar 

  • Xiao H, Neuveut C, Tiffany HL, Benkirane M, Rich EA, Murphy PM, Jeang KT (2000) Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci USA 97:11466–11471

    Article  CAS  PubMed  Google Scholar 

  • Zhou BY, He JJ (2004) Proliferation inhibition of astrocytes, neurons, and non-glial cells by HIV-1 Tat protein. Neurosci Lett 359:155–158

    Article  CAS  PubMed  Google Scholar 

  • Zhou BY, Liu Y, Kim B, Xiao Y, He JJ (2004) Astrocyte activation and dysfunction and neuron death by HIV-1 Tat expression in astrocytes. Mol Cell Neurosci 27:296–305

    CAS  PubMed  Google Scholar 

  • Zidovetzki R, Wang JL, Chen P, Jeyaseelan R, Hofman F (1998) Human immunodeficiency virus Tat protein induces interleukin 6 mRNA expression in human brain endothelial cells via protein kinase C- and cAMP-dependent protein kinase pathways. AIDS Res Hum Retroviruses 14:825–833

    Article  CAS  PubMed  Google Scholar 

  • Zocchi MR, Rubartelli A, Morgavi P, Poggi A (1998) HIV-1 Tat inhibits human natural killer cell function by blocking L-type calcium channels. J Immunol 161:2938–2943

    CAS  PubMed  Google Scholar 

  • Zou W, Kim BO, Zhou BY, Liu Y, Messing A, He JJ (2007) Protection against human immunodeficiency virus type 1 Tat neurotoxicity by Ginkgo biloba extract EGb 761 involving glial fibrillary acidic protein. Am J Pathol 171:1923–1935

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Institutes of Health grants R01NS039804 and R01NS065875 (to JJH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnny J. He.

Additional information

Part of this work was presented at the 15th Annual Conference of the Society of Neuroimmune Pharmacology in April 2008 and at the 9th International Symposium on Neurovirology in June 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Y., Zou, W., Green, L.A. et al. Activation of Egr-1 Expression in Astrocytes by HIV-1 Tat: New Insights into Astrocyte-Mediated Tat Neurotoxicity. J Neuroimmune Pharmacol 6, 121–129 (2011). https://doi.org/10.1007/s11481-010-9217-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-010-9217-8

Keywords

Navigation