Skip to main content

Advertisement

Log in

Innate and Adaptive Factors Regulating Human Immunodeficiency Virus Type 1 Genomic Activation

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Over the past decade, antiretroviral therapy targeting the viral entry process, reverse transcriptase, integrase, and protease, has prolonged the lives of people infected with human immunodeficiency virus type 1 (HIV-1). However, despite the development of more effective therapeutic strategies, reservoirs of viral infection remain. This review discusses molecular mechanisms surrounding the development of latency from the site of integration to pre- and post-integration maintenance of latency, including epigenetic factors. In addition, an overview of innate and adaptive cells important to HIV-1 infection are examined from the viewpoint of cytokines released and cytokines that act on these cells to explore an overall understanding of HIV-1 proviral genome activation. Finally, this review is discussed from the viewpoint of how an understanding of the interplay of all of these factors will help guide the next generation of therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al-Harthi L, Roebuck KA, Landay A (1998) Induction of HIV-1 replication by type 1-like cytokines, interleukin (IL)-12 and IL-15: effect on viral transcriptional activation, cellular proliferation, and endogenous cytokine production. J Clin Immunol 18:124–131

    CAS  PubMed  Google Scholar 

  • Albright AV, Vos RM, Gonzalez-Scarano F (2004) Low-level HIV replication in mixed glial cultures is associated with alterations in the processing of p55(Gag). Virology 325:328–339

    CAS  PubMed  Google Scholar 

  • Alce TM, Popik W (2004) APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J Biol Chem 279:34083–34086

    CAS  PubMed  Google Scholar 

  • Alexaki A, Wigdahl B (2008) HIV-1 infection of bone marrow hematopoietic progenitor cells and their role in trafficking and viral dissemination. PLoS Pathog 4:e1000215

    PubMed  Google Scholar 

  • Alexaki A, Liu Y, Wigdahl B (2008) Cellular reservoirs of HIV-1 and their role in viral persistence. Curr HIV Res 6:388–400

    CAS  PubMed  Google Scholar 

  • Alfano M, Crotti A, Vicenzi E, Poli G (2008) New players in cytokine control of HIV infection. Curr HIV/AIDS Rep 5:27–32

    PubMed  Google Scholar 

  • Alter G, Altfeld M (2009) NK cells in HIV-1 infection: evidence for their role in the control of HIV-1 infection. J Intern Med 265:29–42

    CAS  PubMed  Google Scholar 

  • An SF, Groves M, Gray F, Scaravilli F (1999) Early entry and widespread cellular involvement of HIV-1 DNA in brains of HIV-1 positive asymptomatic individuals. J Neuropathol Exp Neurol 58:1156–1162

    CAS  PubMed  Google Scholar 

  • Archin NM, Keedy KS, Espeseth A, Dang H, Hazuda DJ, Margolis DM (2009) Expression of latent human immunodeficiency type 1 is induced by novel and selective histone deacetylase inhibitors. AIDS 23:1799–1806

    CAS  PubMed  Google Scholar 

  • Barboric M, Nissen RM, Kanazawa S, Jabrane-Ferrat N, Peterlin BM (2001) NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol Cell 8:327–337

    CAS  PubMed  Google Scholar 

  • Barr SD, Leipzig J, Shinn P, Ecker JR, Bushman FD (2005) Integration targeting by avian sarcoma-leukosis virus and human immunodeficiency virus in the chicken genome. J Virol 79:12035–12044

    CAS  PubMed  Google Scholar 

  • Berkhout B, Jeang KT (1992) Functional roles for the TATA promoter and enhancers in basal and Tat-induced expression of the human immunodeficiency virus type 1 long terminal repeat. J Virol 66:139–149

    CAS  PubMed  Google Scholar 

  • Berkhout B, Gatignol A, Rabson AB, Jeang KT (1990) TAR-independent activation of the HIV-1 LTR: evidence that tat requires specific regions of the promoter. Cell 62:757–767

    CAS  PubMed  Google Scholar 

  • Berry C, Hannenhalli S, Leipzig J, Bushman FD (2006) Selection of target sites for mobile DNA integration in the human genome. PLoS Comput Biol 2:e157

    PubMed  Google Scholar 

  • Biswas P, Poli G, Kinter AL, Justement JS, Stanley SK, Maury WJ, Bressler P, Orenstein JM, Fauci AS (1992) Interferon gamma induces the expression of human immunodeficiency virus in persistently infected promonocytic cells (U1) and redirects the production of virions to intracytoplasmic vacuoles in phorbol myristate acetate-differentiated U1 cells. J Exp Med 176:739–750

    CAS  PubMed  Google Scholar 

  • Biswas P, Poli G, Orenstein JM, Fauci AS (1994) Cytokine-mediated induction of human immunodeficiency virus (HIV) expression and cell death in chronically infected U1 cells: do tumor necrosis factor alpha and gamma interferon selectively kill HIV-infected cells? J Virol 68:2598–2604

    CAS  PubMed  Google Scholar 

  • Boden D, Pusch O, Lee F, Tucker L, Ramratnam B (2003) Human immunodeficiency virus type 1 escape from RNA interference. J Virol 77:11531–11535

    CAS  PubMed  Google Scholar 

  • Brack-Werner R, Kleinschmidt A, Ludvigsen A, Mellert W, Neumann M, Herrmann R, Khim MC, Burny A, Muller-Lantzsch N, Stavrou D et al (1992) Infection of human brain cells by HIV-1: restricted virus production in chronically infected human glial cell lines. AIDS 6:273–285

    CAS  PubMed  Google Scholar 

  • Brady T, Agosto LM, Malani N, Berry CC, O’Doherty U, Bushman F (2009) HIV integration site distributions in resting and activated CD4+ T cells infected in culture. AIDS 23:1461–1471

    PubMed  Google Scholar 

  • Bukrinsky MI, Stanwick TL, Dempsey MP, Stevenson M (1991) Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254:423–427

    CAS  PubMed  Google Scholar 

  • Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S, Stevenson M (1992) Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci U S A 89:6580–6584

    CAS  PubMed  Google Scholar 

  • Burdo TH, Gartner S, Mauger D, Wigdahl B (2004a) Region-specific distribution of human immunodeficiency virus type 1 long terminal repeats containing specific configurations of CCAAT/enhancer-binding protein site II in brains derived from demented and nondemented patients. J Neurovirol 10(Suppl 1):7–14

    CAS  PubMed  Google Scholar 

  • Burdo TH, Nonnemacher M, Irish BP, Choi CH, Krebs FC, Gartner S, Wigdahl B (2004b) High-affinity interaction between HIV-1 Vpr and specific sequences that span the C/EBP and adjacent NF-kappaB sites within the HIV-1 LTR correlate with HIV-1-associated dementia. DNA Cell Biol 23:261–269

    CAS  PubMed  Google Scholar 

  • Burnett JC, Miller-Jensen K, Shah PS, Arkin AP, Schaffer DV (2009) Control of stochastic gene expression by host factors at the HIV promoter. PLoS Pathog 5:e1000260

    PubMed  Google Scholar 

  • Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S, Hoffmann C (2005) Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 3:848–858

    CAS  PubMed  Google Scholar 

  • Byrnes AA, Harris DM, Atabani SF, Sabundayo BP, Langan SJ, Margolick JB, Karp CL (2008) Immune activation and IL-12 production during acute/early HIV infection in the absence and presence of highly active, antiretroviral therapy. J Leukoc Biol 84:1447–1453

    CAS  PubMed  Google Scholar 

  • Cereseto A, Manganaro L, Gutierrez MI, Terreni M, Fittipaldi A, Lusic M, Marcello A, Giacca M (2005) Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J 24:3070–3081

    CAS  PubMed  Google Scholar 

  • Chen K, Huang J, Zhang C, Huang S, Nunnari G, Wang FX, Tong X, Gao L, Nikisher K, Zhang H (2006) Alpha interferon potently enhances the anti-human immunodeficiency virus type 1 activity of APOBEC3G in resting primary CD4 T cells. J Virol 80:7645–7657

    CAS  PubMed  Google Scholar 

  • Cheng-Mayer C, Weiss C, Seto D, Levy JA (1989) Isolates of human immunodeficiency virus type 1 from the brain may constitute a special group of the AIDS virus. Proc Natl Acad Sci U S A 86:8575–8579

    CAS  PubMed  Google Scholar 

  • Chun TW, Finzi D, Margolick J, Chadwick K, Schwartz D, Siliciano RF (1995) In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat Med 1:1284–1290

    CAS  PubMed  Google Scholar 

  • Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, Hermankova M, Chadwick K, Margolick J, Quinn TC, Kuo YH, Brookmeyer R, Zeiger MA, Barditch-Crovo P, Siliciano RF (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387:183–188

    CAS  PubMed  Google Scholar 

  • Chun TW, Engel D, Mizell SB, Hallahan CW, Fischette M, Park S, Davey RT Jr, Dybul M, Kovacs JA, Metcalf JA, Mican JM, Berrey MM, Corey L, Lane HC, Fauci AS (1999) Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nat Med 5:651–655

    CAS  PubMed  Google Scholar 

  • Coburn GA, Cullen BR (2002) Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 76:9225–9231

    CAS  PubMed  Google Scholar 

  • Coffin JM (1995) HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267:483–489

    CAS  PubMed  Google Scholar 

  • Coleman CM, Wu L (2009) HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology 6:51

    PubMed  Google Scholar 

  • Cosenza MA, Zhao ML, Si Q, Lee SC (2002) Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol 12:442–455

    CAS  PubMed  Google Scholar 

  • Coull JJ, Romerio F, Sun JM, Volker JL, Galvin KM, Davie JR, Shi Y, Hansen U, Margolis DM (2000) The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1. J Virol 74:6790–6799

    CAS  PubMed  Google Scholar 

  • d'Adda di Fagagna F, Marzio G, Gutierrez MI, Kang LY, Falaschi A, Giacca M (1995) Molecular and functional interactions of transcription factor USF with the long terminal repeat of human immunodeficiency virus type 1. J Virol 69:2765–2775

    PubMed  Google Scholar 

  • Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA (1992) Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42:1736–1739

    CAS  PubMed  Google Scholar 

  • Demarchi F, D'Agaro P, Falaschi A, Giacca M (1993) In vivo footprinting analysis of constitutive and inducible protein–DNA interactions at the long terminal repeat of human immunodeficiency virus type 1. J Virol 67:7450–7460

    CAS  PubMed  Google Scholar 

  • Deng L, Wang D, de la Fuente C, Wang L, Li H, Lee CG, Donnelly R, Wade JD, Lambert P, Kashanchi F (2001) Enhancement of the p300 HAT activity by HIV-1 Tat on chromatin DNA. Virology 289:312–326

    CAS  PubMed  Google Scholar 

  • Diamond TL, Roshal M, Jamburuthugoda VK, Reynolds HM, Merriam AR, Lee KY, Balakrishnan M, Bambara RA, Planelles V, Dewhurst S, Kim B (2004) Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J Biol Chem 279:51545–51553

    CAS  PubMed  Google Scholar 

  • Dong C, Kwas C, Wu L (2009) Transcriptional restriction of human immunodeficiency virus type 1 gene expression in undifferentiated primary monocytes. J Virol 83:3518–3527

    CAS  PubMed  Google Scholar 

  • Edelstein LC, Micheva-Viteva S, Phelan BD, Dougherty JP (2009) Short communication: activation of latent HIV type 1 gene expression by suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor approved for use to treat cutaneous T cell lymphoma. AIDS Res Hum Retroviruses 25:883–887

    CAS  PubMed  Google Scholar 

  • Engelman A, Mizuuchi K, Craigie R (1991) HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:1211–1221

    CAS  PubMed  Google Scholar 

  • Fan L, Peden K (1992) Cell-free transmission of Vif mutants of HIV-1. Virology 190:19–29

    CAS  PubMed  Google Scholar 

  • Farnet CM, Bushman FD (1997) HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell 88:483–492

    CAS  PubMed  Google Scholar 

  • Festenstein R, Pagakis SN, Hiragami K, Lyon D, Verreault A, Sekkali B, Kioussis D (2003) Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science 299:719–721

    CAS  PubMed  Google Scholar 

  • Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R, Gallant J, Markowitz M, Ho DD, Richman DD, Siliciano RF (1997) Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278:1295–1300

    CAS  PubMed  Google Scholar 

  • Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, Smith K, Lisziewicz J, Lori F, Flexner C, Quinn TC, Chaisson RE, Rosenberg E, Walker B, Gange S, Gallant J, Siliciano RF (1999) Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 5:512–517

    CAS  PubMed  Google Scholar 

  • Fischer-Smith T, Croul S, Adeniyi A, Rybicka K, Morgello S, Khalili K, Rappaport J (2004) Macrophage/microglial accumulation and proliferating cell nuclear antigen expression in the central nervous system in human immunodeficiency virus encephalopathy. Am J Pathol 164:2089–2099

    CAS  PubMed  Google Scholar 

  • Folks TM, Justement J, Kinter A, Schnittman S, Orenstein J, Poli G, Fauci AS (1988a) Characterization of a promonocyte clone chronically infected with HIV and inducible by 13-phorbol-12-myristate acetate. J Immunol 140:1117–1122

    CAS  PubMed  Google Scholar 

  • Folks TM, Kessler SW, Orenstein JM, Justement JS, Jaffe ES, Fauci AS (1988b) Infection and replication of HIV-1 in purified progenitor cells of normal human bone marrow. Science 242:919–922

    CAS  PubMed  Google Scholar 

  • Fraser C, Ferguson NM, Ghani AC, Prins JM, Lange JM, Goudsmit J, Anderson RM, de Wolf F (2000) Reduction of the HIV-1-infected T-cell reservoir by immune activation treatment is dose-dependent and restricted by the potency of antiretroviral drugs. AIDS 14:659–669

    CAS  PubMed  Google Scholar 

  • Gao F, Robertson DL, Morrison SG, Hui H, Craig S, Decker J, Fultz PN, Girard M, Shaw GM, Hahn BH, Sharp PM (1996) The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin. J Virol 70:7013–7029

    CAS  PubMed  Google Scholar 

  • Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T (1997) CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci U S A 94:2927–2932

    CAS  PubMed  Google Scholar 

  • Gomez-Gonzalo M, Carretero M, Rullas J, Lara-Pezzi E, Aramburu J, Berkhout B, Alcami J, Lopez-Cabrera M (2001) The hepatitis B virus X protein induces HIV-1 replication and transcription in synergy with T-cell activation signals: functional roles of NF-kappaB/NF-AT and SP1-binding sites in the HIV-1 long terminal repeat promoter. J Biol Chem 276:35435–35443

    CAS  PubMed  Google Scholar 

  • Granowitz EV, Saget BM, Wang MZ, Dinarello CA, Skolnik PR (1995) Interleukin 1 induces HIV-1 expression in chronically infected U1 cells: blockade by interleukin 1 receptor antagonist and tumor necrosis factor binding protein type 1. Mol Med 1:667–677

    CAS  PubMed  Google Scholar 

  • Haase AT (1986) The AIDS lentivirus connection. Microb Pathog 1:1–4

    CAS  PubMed  Google Scholar 

  • Han Y, Wind-Rotolo M, Yang HC, Siliciano JD, Siliciano RF (2007) Experimental approaches to the study of HIV-1 latency. Nat Rev Microbiol 5:95–106

    CAS  PubMed  Google Scholar 

  • Harrich D, Garcia J, Mitsuyasu R, Gaynor R (1990) TAR independent activation of the human immunodeficiency virus in phorbol ester stimulated T lymphocytes. EMBO J 9:4417–4423

    CAS  PubMed  Google Scholar 

  • Harris A, Bolus NE (2008) HIV/AIDS: an update. Radiol Technol 79:243–252, quiz 253–245

    PubMed  Google Scholar 

  • He G, Margolis DM (2002) Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol Cell Biol 22:2965–2973

    CAS  PubMed  Google Scholar 

  • Heider U, Rademacher J, Lamottke B, Mieth M, Moebs M, von Metzler I, Assaf C, Sezer O (2009) Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in cutaneous T cell lymphoma. Eur J Haematol 82:440–449

    CAS  PubMed  Google Scholar 

  • Henderson AJ, Calame KL (1997) CCAAT/enhancer binding protein (C/EBP) sites are required for HIV-1 replication in primary macrophages but not CD4(+) T cells. Proc Natl Acad Sci U S A 94:8714–8719

    CAS  PubMed  Google Scholar 

  • Henderson AJ, Zou X, Calame KL (1995) C/EBP proteins activate transcription from the human immunodeficiency virus type 1 long terminal repeat in macrophages/monocytes. J Virol 69:5337–5344

    CAS  PubMed  Google Scholar 

  • Henderson AJ, Connor RI, Calame KL (1996) C/EBP activators are required for HIV-1 replication and proviral induction in monocytic cell lines. Immunity 5:91–101

    CAS  PubMed  Google Scholar 

  • Henry KW, Wyce A, Lo WS, Duggan LJ, Emre NC, Kao CF, Pillus L, Shilatifard A, Osley MA, Berger SL (2003) Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17:2648–2663

    CAS  PubMed  Google Scholar 

  • Hickey WF, Vass K, Lassmann H (1992) Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol 51:246–256

    CAS  PubMed  Google Scholar 

  • Ho DD, Rota TR, Hirsch MS (1986) Infection of monocyte/macrophages by human T lymphotropic virus type III. J Clin Invest 77:1712–1715

    CAS  PubMed  Google Scholar 

  • Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126

    CAS  PubMed  Google Scholar 

  • Hoberg JE, Popko AE, Ramsey CS, Mayo MW (2006) IkappaB kinase alpha-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol Cell Biol 26:457–471

    CAS  PubMed  Google Scholar 

  • Hogan TH, Nonnemacher MR, Krebs FC, Henderson A, Wigdahl B (2003a) HIV-1 Vpr binding to HIV-1 LTR C/EBP cis-acting elements and adjacent regions is sequence-specific. Biomed Pharmacother 57:41–48

    CAS  PubMed  Google Scholar 

  • Hogan TH, Stauff DL, Krebs FC, Gartner S, Quiterio SJ, Wigdahl B (2003b) Structural and functional evolution of human immunodeficiency virus type 1 long terminal repeat CCAAT/enhancer binding protein sites and their use as molecular markers for central nervous system disease progression. J Neurovirol 9:55–68

    CAS  PubMed  Google Scholar 

  • Holscher C, Holscher A, Ruckerl D, Yoshimoto T, Yoshida H, Mak T, Saris C, Ehlers S (2005) The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis. J Immunol 174:3534–3544

    PubMed  Google Scholar 

  • Ikeda K, Nagano K, Kawakami K (1993) Possible implications of Sp1-induced bending of DNA on synergistic activation of transcription. Gene 136:341–343

    CAS  PubMed  Google Scholar 

  • Imai K, Okamoto T (2006) Transcriptional repression of human immunodeficiency virus type 1 by AP-4. J Biol Chem 281:12495–12505

    CAS  PubMed  Google Scholar 

  • Imamichi T, Yang J, Huang DW, Brann TW, Fullmer BA, Adelsberger JW, Lempicki RA, Baseler MW, Lane HC (2008) IL-27, a novel anti-HIV cytokine, activates multiple interferon-inducible genes in macrophages. AIDS 22:39–45

    CAS  PubMed  Google Scholar 

  • Jacque JM, Triques K, Stevenson M (2002) Modulation of HIV-1 replication by RNA interference. Nature 418:435–438

    CAS  PubMed  Google Scholar 

  • Jiang G, Espeseth A, Hazuda DJ, Margolis DM (2007) c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter. J Virol 81:10914–10923

    CAS  PubMed  Google Scholar 

  • Joel P, Shao W, Pratt K (1993) A nuclear protein with enhanced binding to methylated Sp1 sites in the AIDS virus promoter. Nucleic Acids Res 21:5786–5793

    CAS  PubMed  Google Scholar 

  • Jones KA, Peterlin BM (1994) Control of RNA initiation and elongation at the HIV-1 promoter. Annu Rev Biochem 63:717–743

    CAS  PubMed  Google Scholar 

  • Jordan A, Defechereux P, Verdin E (2001) The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J 20:1726–1738

    CAS  PubMed  Google Scholar 

  • Jordan A, Bisgrove D, Verdin E (2003) HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 22:1868–1877

    CAS  PubMed  Google Scholar 

  • Kaehlcke K, Dorr A, Hetzer-Egger C, Kiermer V, Henklein P, Schnoelzer M, Loret E, Cole PA, Verdin E, Ott M (2003) Acetylation of Tat defines a cyclinT1-independent step in HIV transactivation. Mol Cell 12:167–176

    PubMed  Google Scholar 

  • Kauder SE, Bosque A, Lindqvist A, Planelles V, Verdin E (2009) Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog 5:e1000495

    PubMed  Google Scholar 

  • Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H, Maudoux F, Calomme C, Burny A, Nakatani Y, Jeang KT, Benkirane M, Van Lint C (1999) HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J 18:6106–6118

    CAS  PubMed  Google Scholar 

  • Kim YK, Bourgeois CF, Pearson R, Tyagi M, West MJ, Wong J, Wu SY, Chiang CM, Karn J (2006) Recruitment of TFIIH to the HIV LTR is a rate-limiting step in the emergence of HIV from latency. EMBO J 25:3596–3604

    CAS  PubMed  Google Scholar 

  • Kinter AL, Bende SM, Hardy EC, Jackson R, Fauci AS (1995) Interleukin 2 induces CD8+ T cell-mediated suppression of human immunodeficiency virus replication in CD4+ T cells and this effect overrides its ability to stimulate virus expression. Proc Natl Acad Sci U S A 92:10985–10989

    CAS  PubMed  Google Scholar 

  • Klein SA, Klebba C, Kauschat D, Pape M, Ozmen L, Hoelzer D, Ottmann OG, Kalina U (2000) Interleukin-18 stimulates HIV-1 replication in a T-cell line. Eur Cytokine Netw 11:47–52

    CAS  PubMed  Google Scholar 

  • Koelsch KK, Liu L, Haubrich R, May S, Havlir D, Gunthard HF, Ignacio CC, Campos-Soto P, Little SJ, Shafer R, Robbins GK, D’Aquila RT, Kawano Y, Young K, Dao P, Spina CA, Richman DD, Wong JK (2008) Dynamics of total, linear nonintegrated, and integrated HIV-1 DNA in vivo and in vitro. J Infect Dis 197:411–419

    PubMed  Google Scholar 

  • Koot M, Keet IP, Vos AH, de Goede RE, Roos MT, Coutinho RA, Miedema F, Schellekens PT, Tersmette M (1993) Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Intern Med 118:681–688

    CAS  PubMed  Google Scholar 

  • Korin YD, Zack JA (1999) Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J Virol 73:6526–6532

    CAS  PubMed  Google Scholar 

  • Kramer-Hammerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R (2005) Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 111:194–213

    PubMed  Google Scholar 

  • Lassen K, Han Y, Zhou Y, Siliciano J, Siliciano RF (2004) The multifactorial nature of HIV-1 latency. Trends Mol Med 10:525–531

    CAS  PubMed  Google Scholar 

  • Lassmann H, Schmied M, Vass K, Hickey WF (1993) Bone marrow derived elements and resident microglia in brain inflammation. Glia 7:19–24

    CAS  PubMed  Google Scholar 

  • Lehrman G, Hogue IB, Palmer S, Jennings C, Spina CA, Wiegand A, Landay AL, Coombs RW, Richman DD, Mellors JW, Coffin JM, Bosch RJ, Margolis DM (2005) Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet 366:549–555

    CAS  PubMed  Google Scholar 

  • Leonard J, Parrott C, Buckler-White AJ, Turner W, Ross EK, Martin MA, Rabson AB (1989) The NF-kappa B binding sites in the human immunodeficiency virus type 1 long terminal repeat are not required for virus infectivity. J Virol 63:4919–4924

    CAS  PubMed  Google Scholar 

  • Lewinski MK, Bisgrove D, Shinn P, Chen H, Hoffmann C, Hannenhalli S, Verdin E, Berry CC, Ecker JR, Bushman FD (2005) Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J Virol 79:6610–6619

    CAS  PubMed  Google Scholar 

  • Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H, Crawford G, Collins F, Shinn P, Leipzig J, Hannenhalli S, Berry CC, Ecker JR, Bushman FD (2006) Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2:e60

    PubMed  Google Scholar 

  • Lim HG, Suzuki K, Cooper DA, Kelleher AD (2008) Promoter-targeted siRNAs induce gene silencing of simian immunodeficiency virus (SIV) infection in vitro. Mol Ther 16:565–570

    CAS  PubMed  Google Scholar 

  • Liszewski MK, Yu JJ, O'Doherty U (2009) Detecting HIV-1 integration by repetitive-sampling Alu-gag PCR. Methods 47:254–260

    CAS  PubMed  Google Scholar 

  • Maciaszek JW, Parada NA, Cruikshank WW, Center DM, Kornfeld H, Viglianti GA (1997) IL-16 represses HIV-1 promoter activity. J Immunol 158:5–8

    CAS  PubMed  Google Scholar 

  • Madani N, Kabat D (2000) Cellular and viral specificities of human immunodeficiency virus type 1 vif protein. J Virol 74:5982–5987

    CAS  PubMed  Google Scholar 

  • Managlia EZ, Landay A, Al-Harthi L (2006) Interleukin-7 induces HIV replication in primary naive T cells through a nuclear factor of activated T cell (NFAT)-dependent pathway. Virology 350:443–452

    CAS  PubMed  Google Scholar 

  • Marcello A (2006) Latency: the hidden HIV-1 challenge. Retrovirology 3:7

    PubMed  Google Scholar 

  • Marshall HM, Ronen K, Berry C, Llano M, Sutherland H, Saenz D, Bickmore W, Poeschla E, Bushman FD (2007) Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting. PLoS One 2:e1340

    PubMed  Google Scholar 

  • Marzio G, Giacca M (1999) Chromatin control of HIV-1 gene expression. Genetica 106:125–130

    CAS  PubMed  Google Scholar 

  • Marzio G, Tyagi M, Gutierrez MI, Giacca M (1998) HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc Natl Acad Sci U S A 95:13519–13524

    CAS  PubMed  Google Scholar 

  • McAllister JJ, Phillips D, Millhouse S, Conner J, Hogan T, Ross HL, Wigdahl B (2000) Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication. Virology 274:262–277

    CAS  PubMed  Google Scholar 

  • McElrath MJ, Pruett JE, Cohn ZA (1989) Mononuclear phagocytes of blood and bone marrow: comparative roles as viral reservoirs in human immunodeficiency virus type 1 infections. Proc Natl Acad Sci U S A 86:675–679

    CAS  PubMed  Google Scholar 

  • Merrill JE, Koyanagi Y, Chen IS (1989) Interleukin-1 and tumor necrosis factor alpha can be induced from mononuclear phagocytes by human immunodeficiency virus type 1 binding to the CD4 receptor. J Virol 63:4404–4408

    CAS  PubMed  Google Scholar 

  • Miller MD, Farnet CM, Bushman FD (1997) Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol 71:5382–5390

    CAS  PubMed  Google Scholar 

  • Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:E234

    PubMed  Google Scholar 

  • Nicholson JK, Cross GD, Callaway CS, McDougal JS (1986) In vitro infection of human monocytes with human T lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). J Immunol 137:323–329

    CAS  PubMed  Google Scholar 

  • Nielsen C, Pedersen C, Lundgren JD, Gerstoft J (1993) Biological properties of HIV isolates in primary HIV infection: consequences for the subsequent course of infection. AIDS 7:1035–1040

    CAS  PubMed  Google Scholar 

  • Nonnemacher MR, Irish BP, Liu Y, Mauger D, Wigdahl B (2004) Specific sequence configurations of HIV-1 LTR G/C box array result in altered recruitment of Sp isoforms and correlate with disease progression. J Neuroimmunol 157:39–47

    CAS  PubMed  Google Scholar 

  • O’Brien WA (1994) HIV-1 entry and reverse transcription in macrophages. J Leukoc Biol 56:273–277

    PubMed  Google Scholar 

  • Oliva A, Kinter AL, Vaccarezza M, Rubbert A, Catanzaro A, Moir S, Monaco J, Ehler L, Mizell S, Jackson R, Li Y, Romano JW, Fauci AS (1998) Natural killer cells from human immunodeficiency virus (HIV)-infected individuals are an important source of CC-chemokines and suppress HIV-1 entry and replication in vitro. J Clin Invest 102:223–231

    CAS  PubMed  Google Scholar 

  • Paci P, Carello R, Bernaschi M, D’Offizi G, Castiglione F (2009) Immune control of HIV-1 infection after therapy interruption: immediate versus deferred antiretroviral therapy. BMC Infect Dis 9:172

    PubMed  Google Scholar 

  • Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, Aschman DJ, Holmberg SD (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 338:853–860

    PubMed  Google Scholar 

  • Pazin MJ, Sheridan PL, Cannon K, Cao Z, Keck JG, Kadonaga JT, Jones KA (1996) NF-kappa B-mediated chromatin reconfiguration and transcriptional activation of the HIV-1 enhancer in vitro. Genes Dev 10:37–49

    CAS  PubMed  Google Scholar 

  • Peluso R, Haase A, Stowring L, Edwards M, Ventura P (1985) A Trojan Horse mechanism for the spread of visna virus in monocytes. Virology 147:231–236

    CAS  PubMed  Google Scholar 

  • Peng G, Lei KJ, Jin W, Greenwell-Wild T, Wahl SM (2006) Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti-HIV-1 activity. J Exp Med 203:41–46

    CAS  PubMed  Google Scholar 

  • Peng G, Greenwell-Wild T, Nares S, Jin W, Lei KJ, Rangel ZG, Munson PJ, Wahl SM (2007) Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. Blood 110:393–400

    CAS  PubMed  Google Scholar 

  • Perkins ND, Felzien LK, Betts JC, Leung K, Beach DH, Nabel GJ (1997) Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 275:523–527

    CAS  PubMed  Google Scholar 

  • Pierson TC, Zhou Y, Kieffer TL, Ruff CT, Buck C, Siliciano RF (2002) Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection. J Virol 76:8518–8531

    CAS  PubMed  Google Scholar 

  • Pion M, Jordan A, Biancotto A, Dequiedt F, Gondois-Rey F, Rondeau S, Vigne R, Hejnar J, Verdin E, Hirsch I (2003) Transcriptional suppression of in vitro-integrated human immunodeficiency virus type 1 does not correlate with proviral DNA methylation. J Virol 77:4025–4032

    CAS  PubMed  Google Scholar 

  • Poli G, Bressler P, Kinter A, Duh E, Timmer WC, Rabson A, Justement JS, Stanley S, Fauci AS (1990) Interleukin 6 induces human immunodeficiency virus expression in infected monocytic cells alone and in synergy with tumor necrosis factor alpha by transcriptional and post-transcriptional mechanisms. J Exp Med 172:151–158

    CAS  PubMed  Google Scholar 

  • Prins JM, Jurriaans S, van Praag RM, Blaak H, van Rij R, Schellekens PT, ten Berge IJ, Yong SL, Fox CH, Roos MT, de Wolf F, Goudsmit J, Schuitemaker H, Lange JM (1999) Immuno-activation with anti-CD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy. AIDS 13:2405–2410

    CAS  PubMed  Google Scholar 

  • Quinones-Mateu ME, Mas A, Lain de Lera T, Soriano V, Alcami J, Lederman MM, Domingo E (1998) LTR and tat variability of HIV-1 isolates from patients with divergent rates of disease progression. Virus Res 57:11–20

    CAS  PubMed  Google Scholar 

  • Rodriguez AR, Arulanandam BP, Hodara VL, McClure HM, Cobb EK, Salas MT, White R, Murthy KK (2007) Influence of interleukin-15 on CD8+ natural killer cells in human immunodeficiency virus type 1-infected chimpanzees. J Gen Virol 88:641–651

    CAS  PubMed  Google Scholar 

  • Ross EK, Buckler-White AJ, Rabson AB, Englund G, Martin MA (1991) Contribution of NF-kappa B and Sp1 binding motifs to the replicative capacity of human immunodeficiency virus type 1: distinct patterns of viral growth are determined by T-cell types. J Virol 65:4350–4358

    CAS  PubMed  Google Scholar 

  • Ross HL, Gartner S, McArthur JC, Corboy JR, McAllister JJ, Millhouse S, Wigdahl B (2001a) HIV-1 LTR C/EBP binding site sequence configurations preferentially encountered in brain lead to enhanced C/EBP factor binding and increased LTR-specific activity. J Neurovirol 7:235–249

    CAS  PubMed  Google Scholar 

  • Ross HL, Nonnemacher MR, Hogan TH, Quiterio SJ, Henderson A, McAllister JJ, Krebs FC, Wigdahl B (2001b) Interaction between CCAAT/enhancer binding protein and cyclic AMP response element binding protein 1 regulates human immunodeficiency virus type 1 transcription in cells of the monocyte/macrophage lineage. J Virol 75:1842–1856

    CAS  PubMed  Google Scholar 

  • Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–529

    CAS  PubMed  Google Scholar 

  • Shao W (1997) Characterization of HMBP-2, a DNA-binding protein that binds to HIV-1 LTR when only one of the three Sp1 sites is methylated. J Biomed Sci 4:39–46

    CAS  PubMed  Google Scholar 

  • Shapiro L, Puren AJ, Barton HA, Novick D, Peskind RL, Shenkar R, Gu Y, Su MS, Dinarello CA (1998) Interleukin 18 stimulates HIV type 1 in monocytic cells. Proc Natl Acad Sci U S A 95:12550–12555

    CAS  PubMed  Google Scholar 

  • Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–650

    CAS  PubMed  Google Scholar 

  • Sheehy AM, Gaddis NC, Malim MH (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9:1404–1407

    CAS  PubMed  Google Scholar 

  • Shirazi Y, Pitha PM (1992) Alpha interferon inhibits early stages of the human immunodeficiency virus type 1 replication cycle. J Virol 66:1321–1328

    CAS  PubMed  Google Scholar 

  • Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, Kovacs C, Gange SJ, Siliciano RF (2003) Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9:727–728

    CAS  PubMed  Google Scholar 

  • Siliciano JD, Lai J, Callender M, Pitt E, Zhang H, Margolick JB, Gallant JE, Cofrancesco J Jr, Moore RD, Gange SJ, Siliciano RF (2007) Stability of the latent reservoir for HIV-1 in patients receiving valproic acid. J Infect Dis 195:833–836

    CAS  PubMed  Google Scholar 

  • Simon JH, Gaddis NC, Fouchier RA, Malim MH (1998) Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat Med 4:1397–1400

    CAS  PubMed  Google Scholar 

  • Singh MK, Pauza CD (1992) Extrachromosomal human immunodeficiency virus type 1 sequences are methylated in latently infected U937 cells. Virology 188:451–458

    CAS  PubMed  Google Scholar 

  • Smale ST (2003) The establishment and maintenance of lymphocyte identity through gene silencing. Nat Immunol 4:607–615

    CAS  PubMed  Google Scholar 

  • Steger DJ, Workman JL (1997) Stable co-occupancy of transcription factors and histones at the HIV-1 enhancer. EMBO J 16:2463–2472

    CAS  PubMed  Google Scholar 

  • Stellbrink HJ, van Lunzen J, Westby M, O'Sullivan E, Schneider C, Adam A, Weitner L, Kuhlmann B, Hoffmann C, Fenske S, Aries PS, Degen O, Eggers C, Petersen H, Haag F, Horst HA, Dalhoff K, Mocklinghoff C, Cammack N, Tenner-Racz K, Racz P (2002) Effects of interleukin-2 plus highly active antiretroviral therapy on HIV-1 replication and proviral DNA (COSMIC trial). AIDS 16:1479–1487

    CAS  PubMed  Google Scholar 

  • Suyama M, Daikoku E, Goto T, Sano K, Morikawa Y (2009) Reactivation from latency displays HIV particle budding at plasma membrane, accompanying CD44 upregulation and recruitment. Retrovirology 6:63

    PubMed  Google Scholar 

  • Suzuki K, Shijuuku T, Fukamachi T, Zaunders J, Guillemin G, Cooper D, Kelleher A (2005) Prolonged transcriptional silencing and CpG methylation induced by siRNAs targeted to the HIV-1 promoter region. J RNAi Gene Silencing 1:66–78

    CAS  PubMed  Google Scholar 

  • Suzuki K, Juelich T, Lim H, Ishida T, Watanebe T, Cooper DA, Rao S, Kelleher AD (2008) Closed chromatin architecture is induced by an RNA duplex targeting the HIV-1 promoter region. J Biol Chem 283:23353–23363

    CAS  PubMed  Google Scholar 

  • Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, Glass JD (1996) Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann Neurol 39:705–711

    CAS  PubMed  Google Scholar 

  • Tesmer VM, Rajadhyaksha A, Babin J, Bina M (1993) NF-IL6-mediated transcriptional activation of the long terminal repeat of the human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 90:7298–7302

    CAS  PubMed  Google Scholar 

  • Tornatore C, Chandra R, Berger JR, Major EO (1994) HIV-1 infection of subcortical astrocytes in the pediatric central nervous system. Neurology, 44(3 Pt 1):481–487

    CAS  PubMed  Google Scholar 

  • Trillo-Pazos G, Diamanturos A, Rislove L, Menza T, Chao W, Belem P, Sadiq S, Morgello S, Sharer L, Volsky DJ (2003) Detection of HIV-1 DNA in microglia/macrophages, astrocytes and neurons isolated from brain tissue with HIV-1 encephalitis by laser capture microdissection. Brain Pathol 13:144–154

    CAS  PubMed  Google Scholar 

  • Truong MJ, Darcissac EC, Hermann E, Dewulf J, Capron A, Bahr GM (1999) Interleukin-16 inhibits human immunodeficiency virus type 1 entry and replication in macrophages and in dendritic cells. J Virol 73:7008–7013

    CAS  PubMed  Google Scholar 

  • Turner BM (1993) Decoding the nucleosome. Cell 75:5–8

    CAS  PubMed  Google Scholar 

  • Tyagi M, Karn J (2007) CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency. EMBO J 26:4985–4995

    CAS  PubMed  Google Scholar 

  • van Holde K, Zlatanova J (1996) What determines the folding of the chromatin fiber? Proc Natl Acad Sci U S A 93:10548–10555

    PubMed  Google Scholar 

  • Van Lint C, Emiliani S, Ott M, Verdin E (1996) Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J 15:1112–1120

    PubMed  Google Scholar 

  • Van Lint C, Amella CA, Emiliani S, John M, Jie T, Verdin E (1997) Transcription factor binding sites downstream of the human immunodeficiency virus type 1 transcription start site are important for virus infectivity. J Virol 71:6113–6127

    PubMed  Google Scholar 

  • Van Maele B, Busschots K, Vandekerckhove L, Christ F, Debyser Z (2006) Cellular co-factors of HIV-1 integration. Trends Biochem Sci 31:98–105

    PubMed  Google Scholar 

  • van Praag RM, Prins JM, Roos MT, Schellekens PT, Ten Berge IJ, Yong SL, Schuitemaker H, Eerenberg AJ, Jurriaans S, de Wolf F, Fox CH, Goudsmit J, Miedema F, Lange JM (2001) OKT3 and IL-2 treatment for purging of the latent HIV-1 reservoir in vivo results in selective long-lasting CD4+ T cell depletion. J Clin Immunol 21:218–226

    PubMed  Google Scholar 

  • Verdin E (1991) DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J Virol 65:6790–6799

    CAS  PubMed  Google Scholar 

  • Verdin E, Paras P Jr, Van Lint C (1993) Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J 12:3249–3259

    CAS  PubMed  Google Scholar 

  • Volberding P, Demeter L, Bosch RJ, Aga E, Pettinelli C, Hirsch M, Vogler M, Martinez A, Little S, Connick E (2009) Antiretroviral therapy in acute and recent HIV infection: a prospective multicenter stratified trial of intentionally interrupted treatment. AIDS 23:1987–1995

    CAS  PubMed  Google Scholar 

  • von Briesen H, von Mallinckrodt C, Esser R, Muller S, Becker K, Rubsamen-Waigmann H, Andreesen R (1991) Effect of cytokines and lipopolysaccharides on HIV infection of human macrophages. Res Virol 142:197–204

    Google Scholar 

  • Wang Z, Trillo-Pazos G, Kim SY, Canki M, Morgello S, Sharer LR, Gelbard HA, Su ZZ, Kang DC, Brooks AI, Fisher PB, Volsky DJ (2004) Effects of human immunodeficiency virus type 1 on astrocyte gene expression and function: potential role in neuropathogenesis. J Neurovirol 10(Suppl 1):25–32

    PubMed  Google Scholar 

  • Wang FX, Xu Y, Sullivan J, Souder E, Argyris EG, Acheampong EA, Fisher J, Sierra M, Thomson MM, Najera R, Frank I, Kulkosky J, Pomerantz RJ, Nunnari G (2005) IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J Clin Invest 115:128–137

    CAS  PubMed  Google Scholar 

  • Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD (2007) HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 17:1186–1194

    CAS  PubMed  Google Scholar 

  • Watkins BA, Dorn HH, Kelly WB, Armstrong RC, Potts BJ, Michaels F, Kufta CV, Dubois-Dalcq M (1990) Specific tropism of HIV-1 for microglial cells in primary human brain cultures. Science 249:549–553

    CAS  PubMed  Google Scholar 

  • Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV (2005) Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122:169–182

    CAS  PubMed  Google Scholar 

  • WHO/UNAIDS (2007) Joint United Nations Programme on HIV/AIDS/World Helath Organization AIDS epidemic update.

  • Wiech NL, Fisher JF, Helquist P, Wiest O (2009) Inhibition of histone deacetylases: a pharmacological approach to the treatment of non-cancer disorders. Curr Top Med Chem 9:257–271

    CAS  PubMed  Google Scholar 

  • Wiley CA, Schrier RD, Nelson JA, Lampert PW, Oldstone MB (1986) Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A 83:7089–7093

    CAS  PubMed  Google Scholar 

  • Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001) Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193:905–915

    CAS  PubMed  Google Scholar 

  • Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC (2006) NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25:139–149

    CAS  PubMed  Google Scholar 

  • Williams SA, Kwon H, Chen LF, Greene WC (2007) Sustained induction of NF-kappa B is required for efficient expression of latent human immunodeficiency virus type 1. J Virol 81:6043–6056

    CAS  PubMed  Google Scholar 

  • Wolffe AP (1994) Transcription: in tune with the histones. Cell 77:13–16

    CAS  PubMed  Google Scholar 

  • Wolffe AP, Pruss D (1996) Targeting chromatin disruption: transcription regulators that acetylate histones. Cell 84:817–819

    CAS  PubMed  Google Scholar 

  • Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA, Richman DD (1997) Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278:1291–1295

    CAS  PubMed  Google Scholar 

  • Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751

    CAS  PubMed  Google Scholar 

  • Yamagishi M, Ishida T, Miyake A, Cooper DA, Kelleher AD, Suzuki K, Watanabe T (2009) Retroviral delivery of promoter-targeted shRNA induces long-term silencing of HIV-1 transcription. Microbes Infect 11:500–508

    CAS  PubMed  Google Scholar 

  • Yoder KE, Bushman FD (2000) Repair of gaps in retroviral DNA integration intermediates. J Virol 74:11191–11200

    CAS  PubMed  Google Scholar 

  • Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS (1990) HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61:213–222

    CAS  PubMed  Google Scholar 

  • Zhang S, Pointer D, Singer G, Feng Y, Park K, Zhao LJ (1998) Direct binding to nucleic acids by Vpr of human immunodeficiency virus type 1. Gene 212:157–166

    CAS  PubMed  Google Scholar 

  • Zhou Y, Zhang H, Siliciano JD, Siliciano RF (2005) Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J Virol 79:2199–2210

    CAS  PubMed  Google Scholar 

  • Zhu T, Wang N, Carr A, Nam DS, Moor-Jankowski R, Cooper DA, Ho DD (1996) Genetic characterization of human immunodeficiency virus type 1 in blood and genital secretions: evidence for viral compartmentalization and selection during sexual transmission. J Virol 70:3098–3107

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were funded in part by the Public Health Service, National Institutes of Health through grants from the National Institute of Neurological Disorders and Stroke, NS32092 and NS46263, the National Institute of Drug Abuse, DA19807 (Dr. Brian Wigdahl, Principal Investigator), and under the Ruth L. Kirschstein National Research Service Award 5T32MH079785. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Wigdahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, S., Nonnemacher, M.R., Pirrone, V. et al. Innate and Adaptive Factors Regulating Human Immunodeficiency Virus Type 1 Genomic Activation. J Neuroimmune Pharmacol 5, 278–293 (2010). https://doi.org/10.1007/s11481-010-9207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-010-9207-x

Keywords

Navigation