Skip to main content

Advertisement

Log in

Neuropathogenesis of Theiler’s Murine Encephalomyelitis Virus Infection, An Animal Model for Multiple Sclerosis

  • Invited Review
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Theiler’s murine encephalomyelitis virus (TMEV) infection of mice is an experimental model for multiple sclerosis (MS). TMEV induces a biphasic disease in susceptible mouse strains. During the acute phase, 1 week after infection, TMEV causes polioencephalomyelitis characterized by infection and apoptosis of neurons in the gray matter of the brain. During the chronic phase, about 1 month after infection, virus infects glial cells and macrophages, and induces inflammatory demyelination with oligodendrocyte apoptosis and axonal degeneration in the white matter of the spinal cord. Although antibody, CD4+, and CD8+ T cell responses against TMEV capsid proteins play important roles in neuropathogenesis, infectious virus with persistence is necessary to induce demyelination; in general, adoptive transfer of antibody or T cells alone did not induce central nervous system (CNS) disease. The TMEV model can be useful for testing new therapeutic strategies specifically as a viral model for MS. Therapies targeting adhesion molecules, axonal degeneration, and immunosuppression can be beneficial for pure autoimmune CNS demyelinating diseases, such as experimental autoimmune encephalomyelitis, but could be detrimental in virus-induced demyelinating diseases, such as progressive multifocal leukoencephalopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agol VI (2002) Picornavirus genome: an overview. In: Semler BL, Wimmer E (eds) Molecular biology of picornaviruses. ASM, Washington, D.C., pp 127–148

    Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    CAS  PubMed  Google Scholar 

  • Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89

    CAS  PubMed  Google Scholar 

  • Aubagnac S, Brahic M, Bureau J-F (2001) Viral load increases in SJL/J mice persistently infected by Theiler’s virus after inactivation of the β2 m gene. J Virol 75:7723–7726

    CAS  PubMed  Google Scholar 

  • Azoulay A, Brahic M, Bureau J-F (1994) FVB mice transgenic for the H-2D b gene become resistant to persistent infection by Theiler’s virus. J Virol 68:4049–4052

    CAS  PubMed  Google Scholar 

  • Bahk YY, Kappel CA, Rasmussen G, Kim BS (1997) Association between susceptibility to Theiler’s virus-induced demyelination and T-cell receptor Jβ1-Cβ1 polymorphism rather than Vβ deletion. J Virol 71:4181–4185

    CAS  PubMed  Google Scholar 

  • Barbano RL, Dal Canto MC (1984) Serum and cells from Theiler’s virus-infected mice fail to injure myelinating cultures or to produce in vivo transfer of disease. The pathogenesis of Theiler’s virus-induced demyelination appears to differ from that of EAE. J Neurol Sci 66:283–293

    CAS  PubMed  Google Scholar 

  • Begolka WS, Haynes LM, Olson JK, Padilla J, Neville KL, Dal Canto MC, Palma J, Kim BS, Miller SD (2001) CD8-deficient SJL mice display enhanced susceptibility to Theiler’s virus infection and increased demyelinating pathology. J NeuroVirol 7:409–420

    CAS  PubMed  Google Scholar 

  • Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Brück W (2000) Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123:1174–1183

    PubMed  Google Scholar 

  • Bjartmar C, Kinkel RP, Kidd G, Rudick RA, Trapp BD (2001) Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology 57:1248–1252

    CAS  PubMed  Google Scholar 

  • Borson ND, Paul C, Lin X, Nevala WK, Strausbauch MA, Rodriguez M, Wettstein PJ (1997) Brain-infiltrating cytolytic T lymphocytes specific for Theiler’s virus recognize H2Db molecules complexed with a viral VP2 peptide lacking a consensus anchor residue. J Virol 71:5244–5250

    CAS  PubMed  Google Scholar 

  • Buenz EJ, Sauer BM, Lafrance-Corey RG, Deb C, Denic A, German CL, Howe CL (2009) Apoptosis of hippocampal pyramidal neurons is virus independent in a mouse model of acute neurovirulent picornavirus infection. Am J Pathol 175:668–684

    CAS  PubMed  Google Scholar 

  • Burns FR, Li XB, Shen N, Offner H, Chou YK, Vandenbark AA, Heber-Katz E (1989) Both rat and mouse T cell receptors specific for the encephalitogenic determinant of myelin basic protein use similar V alpha and V beta chain genes even though the major histocompatibility complex and encephalitogenic determinants being recognized are different. J Exp Med 169:27–39

    CAS  PubMed  Google Scholar 

  • Burt RK, Padilla J, Dal Canto MC, Miller SD (1999) Viral hyperinfection of the central nervous system and high mortality after hematopoietic stem cell transplantation for treatment of Theiler’s murine encephalomyelitis virus-induced demyelinating disease. Blood 94:2915–2922

    CAS  PubMed  Google Scholar 

  • Carlson NG, Hill KE, Tsunoda I, Fujinami RS, Rose JW (2006) The pathologic role for COX-2 in apoptotic oligodendrocytes in virus induced demyelinating disease: implications for multiple sclerosis. J Neuroimmunol 174:21–31

    CAS  PubMed  Google Scholar 

  • Carpentier PA, Getts MT, Miller SD (2008) Pro-inflammatory functions of astrocytes correlate with viral clearance and strain-dependent protection from TMEV-induced demyelinating disease. Virology 375:24–36

    CAS  PubMed  Google Scholar 

  • Cash E, Chamorro M, Brahic M (1988) Minus-strand RNA synthesis in the spinal cords of mice persistently infected with Theiler’s virus. J Virol 62:1824–1826

    CAS  PubMed  Google Scholar 

  • Chen D, Texada DE, Duggan C, Deng Y, Redens TB, Langford MP (2006) Caspase-3 and -7 mediate apoptosis of human Chang’s conjunctival cells induced by enterovirus 70. Virology 347:307–322

    CAS  PubMed  Google Scholar 

  • Clatch RJ, Melvold RW, Miller SD, Lipton HL (1985) Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease in mice is influenced by the H-2D region: correlation with TMEV-specific delayed-type hypersensitivity. J Neuroimmunol 135:1408–1414

    CAS  Google Scholar 

  • Coffman RL (2006) Origins of the TH1-TH2 model: a personal perspective. Nat Immunol 7:539–541

    CAS  PubMed  Google Scholar 

  • Coffman RL, Ohara J, Bond MW, Carty J, Zlotnik A, Paul WE (1986) B cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide-activated B cells. J Immunol 136:4538–4541

    CAS  PubMed  Google Scholar 

  • Crozat K, Beutler B (2004) TLR7: a new sensor of viral infection. Proc Natl Acad Sci USA 101:6835–6836

    CAS  PubMed  Google Scholar 

  • Dal Canto MC, Lipton HL (1975) Primary demyelination in Theiler’s virus infection. An ultrastructural study. Lab Invest 33:626–637

    CAS  PubMed  Google Scholar 

  • Dal Canto MC, Lipton HL (1980) Schwann cell remyelination and recurrent demyelination in the central nervous system of mice infected with attenuated Theiler’s virus. Am J Pathol 98:101–122

    CAS  PubMed  Google Scholar 

  • Dal Canto MC, Barbano RL (1984) Remyelination during remission in Theiler’s virus infection. Am J Pathol 116:30–45

    CAS  PubMed  Google Scholar 

  • Dal Canto MC, Calenoff MA, Miller SD, Vanderlugt CL (2000) Lymphocytes from mice chronically infected with Theiler’s murine encephalomyelitis virus produce demyelination of organotypic cultures after stimulation with the major encephalitogenic epitope of myelin proteolipid protein. Epitope spreading in TMEV infection has functional activity. J Neuroimmunol 104:79–84

    CAS  PubMed  Google Scholar 

  • Daniels JB, Pappenheimer AM, Richardson S (1952) Observations on encephalomyelitis of mice (DA strain). J Exp Med 96:517–535

    CAS  PubMed  Google Scholar 

  • Dethlefs S, Escriou N, Brahic M, van der Werf S, Larsson-Sciard E-L (1997) Theiler’s virus and Mengo virus induce cross-reactive cytotoxic T lymphocytes restricted to the same immunodominant VP2 epitope in C57BL/6 mice. J Virol 71:5361–5365

    CAS  PubMed  Google Scholar 

  • Du Pasquier RA, Stein MC, Lima MA, Dang X, Jean-Jacques J, Zheng Y, Letvin NL, Koralnik IJ (2006) JC virus induces a vigorous CD8+ cytotoxic T cell response in multiple sclerosis patients. J Neuroimmunol 176:181–186

    PubMed  Google Scholar 

  • Fiette L, Aubert C, Brahic M, Pena-Rossi C (1993) Theiler’s virus infection of β2-microglobulin-deficient mice. J Virol 67:589–592

    CAS  PubMed  Google Scholar 

  • Finkelstein SD (1997) Polyomaviruses and progressive multifocal leukoencephalopathy. In: Connor DH, Chandler FW, Schwartz DA, Manz HJ, Lack EE (eds) Pathology of infectious disease. Appleton & Lange, Stamford, pp 265–272

    Google Scholar 

  • Fritz RB, Wang X, Zhao M-L (2000) Alterations in the spinal cord T cell repertoire during relapsing experimental autoimmune encephalomyelitis. J Immunol 164:6662–6668

    CAS  PubMed  Google Scholar 

  • Fujinami RS, Zurbriggen A, Powell HC (1988) Monoclonal antibody defines determinant between Theiler’s virus and lipid-like structures. J Neuroimmunol 20:25–32

    CAS  PubMed  Google Scholar 

  • Fujinami RS, Rosenthal A, Lampert PW, Zurbriggen A, Yamada M (1989) Survival of athymic (nu/nu) mice after Theiler’s murine encephalomyelitis virus infection by passive administration of neutralizing monoclonal antibody. J Virol 63:2081–2087

    CAS  PubMed  Google Scholar 

  • Gerety SJ, Karpus WJ, Cubbon AR, Goswami RG, Rundell MK, Peterson JD, Miller SD (1994a) Class II-restricted T cell responses in Theiler’s murine encephalomyelitis virus-induced demyelinating disease. V. Mapping of a dominant immunopathologic VP2 T cell epitope in susceptible SJL/J mice. J Immunol 152:908–918

    CAS  PubMed  Google Scholar 

  • Gerety SJ, Rundell MK, Dal Canto MC, Miller SD (1994b) Class II-restricted T cell responses in Theiler’s murine encephalomyelitis virus-induced demyelinating disease. VI. Potentiation of demyelination with and characterization of an immunopathologic CD4+ T cell line specific for an immunodominant VP2 epitope. J Immunol 152:919–929

    CAS  PubMed  Google Scholar 

  • Geurts JJG, Stys PK, Minagar A, Amor S, Zivadinov R (2009) Gray matter pathology in (chronic) MS: modern views on an early observation. J Neurol Sci 282:12–20

    PubMed  Google Scholar 

  • Ghosh S, Goldin E, Gordon FH, Malchow HA, Rask-Madsen J, Rutgeerts P, Vyhnálek P, Zádorová Z, Chir B, Palmer T, Donoghue S (2003) Natalizumab for active Crohn’s disease. (The Natalizumab Pan-European Study Group). N Engl J Med 348:24–32

    CAS  PubMed  Google Scholar 

  • Girard S, Gosselin AS, Pelletier I, Colbere-Garapin F, Couderc T, Blondel B (2002) Restriction of poliovirus RNA replication in persistently infected nerve cells. J Gen Virol 83:1087–1093

    CAS  PubMed  Google Scholar 

  • Inoue A, Choe YK, Kim BS (1994) Analysis of antibody responses to predominant linear epitopes of Theiler’s murine encephalomyelitis virus. J Virol 68:3324–3333

    CAS  PubMed  Google Scholar 

  • Inoue A, Koh C-S, Yamazaki M, Ichikawa M, Isobe M, Ishihara Y, Yagita H, Kim BS (1997) Anti-adhesion molecule therapy in Theiler’s murine encephalomyelitis virus-induced demyelinating disease. Int Immunol 9:1837–1847

    CAS  PubMed  Google Scholar 

  • Jelachich ML, Lipton HL (2005) Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelination: apoptosis in TMEV infection. In: Lavi E, Constantinescu CS (eds) Experimental models of multiple sclerosis. Springer, New York, pp 697–708

    Google Scholar 

  • Johnson AJ, Njenga MK, Hansen MJ, Kuhns ST, Chen L, Rodriguez M, Pease LR (1999) Prevalent class I-restricted T-cell response to the Theiler’s virus epitope Db:VP2121–130 in the absence of endogenous CD4 help, tumor necrosis factor alpha, gamma interferon, perforin, or costimulation through CD28. J Virol 73:3702–3708

    CAS  PubMed  Google Scholar 

  • Johnson AJ, Upshaw J, Pavelko KD, Rodriguez M, Pease LR (2001) Preservation of motor function by inhibition of CD8+ virus peptide-specific T cells in Theiler’s virus infection. FASEB J 15:2760–2762

    CAS  PubMed  Google Scholar 

  • Kang J-A, Mohindru M, Kang B-S, Park SH, Kim BS (2000) Clonal expansion of infiltrating T cells in the spinal cords of SJL/J mice infected with Theiler’s virus. J Immunol 165:583–590

    CAS  PubMed  Google Scholar 

  • Kang B-S, Lyman MA, Kim BS (2002a) Differences in avidity and epitope recognition of CD8+ T cells infiltrating the central nervous systems of SJL/J mice infected with BeAn and DA strains of Theiler’s murine encephalomyelitis virus. J Virol 76:11780–11784

    CAS  PubMed  Google Scholar 

  • Kang B-S, Lyman MA, Kim BS (2002b) The majority of infiltrating CD8+ T cells in the central nervous system of susceptible SJL/J mice infected with Theiler’s virus are virus specific and fully functional. J Virol 76:6577–6585

    CAS  PubMed  Google Scholar 

  • Kang B, Kang HK, Kim BS (2005) Identification of capsid epitopes of Theiler’s virus recognized by CNS-infiltrating CD4+ T cells from virus-infected C57BL/6 mice. Virus Res 108:57–61

    CAS  PubMed  Google Scholar 

  • Kappel CA, Dal Canto MC, Melvold RW, Kim BS (1991) Hierarchy of effects of the MHC and T cell receptor beta-chain genes in susceptibility to Theiler’s murine encephalomyelitis virus-induced demyelinating disease. J Immunol 147:4322–4326

    CAS  PubMed  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed  Google Scholar 

  • Kielian T (2006) Toll-like receptors in central nervous system glial inflammation and homeostasis. J Neurosci Res 83:711–730

    CAS  PubMed  Google Scholar 

  • Kim BS, Bahk YY, Kang HK, Yauch RL, Kang J-A, Park MJ, Ponzio NM (1999) Diverse fine specificity and receptor repertoire of T cells reactive to the major VP1 epitope (VP1230–250) of Theiler’s virus: Vβ restriction correlates with T cell recognition of the c-terminal residue. J Immunol 162:7049–7057

    CAS  PubMed  Google Scholar 

  • Kim BS, Palma JP, Inoue A, Koh C-S (2000) Pathogenic immunity in Theiler’s virus-induced demyelinating disease: a viral model for multiple sclerosis. Arch Immunol Ther Exp (Warsz ) 48:373–379

    CAS  Google Scholar 

  • Kim S-K, Cornberg M, Wang XZ, Chen HD, Selin LK, Welsh RM (2005) Private specificities of CD8 T cell responses control patterns of heterologous immunity. J Exp Med 201:523–533

    CAS  PubMed  Google Scholar 

  • Kleinschmidt-DeMasters BK, Tyler KL (2005) Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med 353:369–374

    CAS  PubMed  Google Scholar 

  • Koralnik IJ (2004) New insights into progressive multifocal leukoencephalopathy. Curr Opin Neurol 17:365–370

    PubMed  Google Scholar 

  • Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brück W (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212

    PubMed  Google Scholar 

  • Langer-Gould A, Atlas SW, Green AJ, Bollen AW, Pelletier D (2005) Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med 353:375–381

    CAS  PubMed  Google Scholar 

  • Léger OJP, Yednock TA, Tanner L, Horner HC, Hines DK, Keen S, Saldanha J, Jones ST, Fritz LC, Bendig MM (1997) Humanization of a mouse antibody against human alpha-4 integrin: a potential therapeutic for the treatment of multiple sclerosis. Hum Antibodies 8:3–16

    PubMed  Google Scholar 

  • Li Q, Yafal AG, Lee YM, Hogle J, Chow M (1994) Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of these sequences at physiological temperature. J Virol 68:3965–3970

    CAS  PubMed  Google Scholar 

  • Libbey JE, Fujinami RS (2003) Viral demyelinating disease in experimental animals. In: Herndon RM (ed) Multiple sclerosis: immunology, pathology and pathophysiology. Demos, New York, pp 125–133

    Google Scholar 

  • Lin MY, Welsh RM (1998) Stability and diversity of T cell receptor repertoire usage during lymphocytic choriomeningitis virus infection of mice. J Exp Med 188:1993–2005

    CAS  PubMed  Google Scholar 

  • Lipton HL (1975) Theiler’s virus infection in mice: an unusual biphasic disease process leading to demyelination. Infect Immun 11:1147–1155

    CAS  PubMed  Google Scholar 

  • Liu C, Collins J, Sharp E (1967) The pathogenesis of Theiler’s GDVII encephalomyelitis virus infection in mice as studied by immunofluorescent technique and infectivity titrations. J Immunol 98:46–55

    CAS  PubMed  Google Scholar 

  • Lovas G, Szilágyi N, Majtényi K, Palkovits M, Komoly S (2000) Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 123:308–317

    PubMed  Google Scholar 

  • Lyman MA, Lee H-G, Kang B-S, Kang H-K, Kim BS (2002) Capsid-specific cytotoxic T lymphocytes recognize three distinct H- 2Db-restricted regions of the BeAn strain of Theiler’s virus and exhibit different cytokine profiles. J Virol 76:3125–3134

    CAS  PubMed  Google Scholar 

  • Lyon MF, Ogunkolade BW, Brown MC, Atherton DJ, Perry VH (1993) A gene affecting Wallerian nerve degeneration maps distally on mouse chromosome 4. Proc Natl Acad Sci USA 90:9717–9720

    CAS  PubMed  Google Scholar 

  • Matsumoto Y (2000) Characterization of T cell receptor (TCR) of organ-specific autoimmune disease-inducing T cells and TCR-based immunotherapy with DNA vaccines. J Neuroimmunol 110:1–12

    CAS  PubMed  Google Scholar 

  • Matsumoto Y (2005) New approach to immunotherapy against organ-specific autoimmune diseases with T cell receptor and chemokine receptor DNA vaccines. Curr Drug Targets Immune Endocr Metabol Disord 5:73–77

    CAS  PubMed  Google Scholar 

  • Matsumoto Y, Jee Y, Sugisaki M (2000) Successful TCR-based immunotherapy for autoimmune myocarditis with DNA vaccines after rapid identification of pathogenic TCR. J Immunol 164:2248–2254

    CAS  PubMed  Google Scholar 

  • Matsumoto Y, Yoon WK, Jee Y, Fujihara K, Misu T, Sato S, Nakashima I, Itoyama Y (2003) Complementarity-determining region 3 spectratyping analysis of the TCR repertoire in multiple sclerosis. J Immunol 170:4846–4853

    CAS  PubMed  Google Scholar 

  • Matthews PM, De Stefano N, Narayanan S, Francis GS, Wolinsky JS, Antel JP, Arnold DL (1998) Putting magnetic resonance spectroscopy studies in context: axonal damage and disability in multiple sclerosis. Semin Neurol 18:327–336

    CAS  PubMed  Google Scholar 

  • McCright IJ, Fujinami RS (1997) Lack of correlation of Theiler’s virus binding to cells with infection. J NeuroVirol 3(Suppl 1):S68–S70

    PubMed  Google Scholar 

  • Melvold RW, Jokinen DM, Knobler RL, Lipton HL (1987) Variations in genetic control of susceptibility to Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease. I. Differences between susceptible SJL/J and resistant BALB/c strains map near the T cell β-chain constant gene on chromosome 6. J Immunol 138:1429–1433

    CAS  PubMed  Google Scholar 

  • Mestre L, Docagne F, Correa F, Loría F, Hernangómez M, Borrell J, Guaza C (2009) A cannabinoid agonist interferes with the progression of a chronic model of multiple sclerosis by downregulating adhesion molecules. Mol Cell Neurosci 40:258–266

    CAS  PubMed  Google Scholar 

  • Miller SD, Gerety SJ, Kennedy MK, Peterson JD, Trotter JL, Tuohy VK, Waltenbaugh C, Dal Canto MC, Lipton HL (1990) Class II-restricted T cell responses in Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease. III. Failure of neuroantigen-specific immune tolerance to affect the clinical course of demyelination. J Neuroimmunol 26:9–23

    CAS  PubMed  Google Scholar 

  • Miller SD, Vanderlugt CL, Begolka WS, Pao W, Yauch RL, Neville KL, Katz-Levy Y, Carrizosa A, Kim BS (1997) Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nat Med 3:1133–1136

    CAS  PubMed  Google Scholar 

  • Miller DH, Khan OA, Sheremata WA, Blumhardt LD, Rice GPA, Libonati MA, Willmer-Hulme AJ, Dalton CM, Miszkiel KA, O’Connor PW (2003) A controlled trial of Natalizumab for relapsing multiple sclerosis. (International Natalizumab Multiple Sclerosis Trial Group.). N Engl J Med 348:15–23

    CAS  PubMed  Google Scholar 

  • Murray PD, Pavelko KD, Leibowitz J, Lin X, Rodriguez M (1998) CD4+ and CD8+ T cells make discrete contributions to demyelination and neurologic disease in a viral model of multiple sclerosis. J Virol 72:7320–7329

    CAS  PubMed  Google Scholar 

  • Musette P, Bureau J-F, Gachelin G, Kourilsky P, Brahic M (1995) T lymphocyte repertoire in Theiler’s virus encephalomyelitis: the nonspecific infiltration of the central nervous system of infected SJL/J mice is associated with a selective local T cell expansion. Eur J Immunol 25:1589–1593

    CAS  PubMed  Google Scholar 

  • Myoung J, Hou W, Kang B, Lyman MA, Kang J-A, Kim BS (2007) The immunodominant CD8+ T cell epitope region of Theiler’s virus in resistant C57BL/6 mice is critical for anti-viral immune responses, viral persistence, and binding to the host cells. Virology 360:159–171

    CAS  PubMed  Google Scholar 

  • Njenga MK, Marques C, Rodriguez M (2004) The role of cellular immune response in Theiler’s virus-induced central nervous system demyelination. J Neuroimmunol 147:73–77

    CAS  PubMed  Google Scholar 

  • O’Neill LA (2004) Immunology. After the toll rush. Science 303:1481–1482

    PubMed  Google Scholar 

  • Ohara Y, Senkowski A, Fu JL, Klaman L, Goodall J, Toth M, Roos RP (1988) Trypsin-sensitive neutralization site on VP1 of Theiler’s murine encephalomyelitis viruses. J Virol 62:3527–3529

    CAS  PubMed  Google Scholar 

  • Olitsky PK (1939) Viral effect produced by intestinal contents of normal mice and of those having spontaneous encephalomyelitis. Proc Soc Exp Biol Med 41:434–437

    Google Scholar 

  • Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173:3916–3924

    CAS  PubMed  Google Scholar 

  • Olson JK, Girvin AM, Miller SD (2001) Direct activation of innate and antigen-presenting functions of microglia following infection with Theiler’s virus. J Virol 75:9780–9789

    CAS  PubMed  Google Scholar 

  • Owens T (2006) Animal models for multiple sclerosis. Adv Neurol 98:77–89

    PubMed  Google Scholar 

  • Palma JP, Yauch RL, Lang S, Kim BS (1999) Potential role of CD4+ T cell-mediated apoptosis of activated astrocytes in Theiler’s virus-induced demyelination. J Immunol 162:6543–6551

    CAS  PubMed  Google Scholar 

  • Penberthy WT, Tsunoda I (2009) The importance of NAD in multiple sclerosis. Curr Pharm Des 15:64–99

    CAS  PubMed  Google Scholar 

  • Rall GF, Mucke L, Oldstone MBA (1995) Consequences of cytotoxic T lymphocyte interaction with major histocompatibility complex class I-expressing neurons in vivo. J Exp Med 182:1201–1212

    CAS  PubMed  Google Scholar 

  • Ramió-Torrentà L, Sastre-Garriga J, Ingle GT, Davies GR, Ameen V, Miller DH, Thompson AJ (2006) Abnormalities in normal appearing tissues in early primary progressive multiple sclerosis and their relation to disability: a tissue specific magnetisation transfer study. J Neurol Neurosurg Psychiatry 77:40–45

    PubMed  Google Scholar 

  • Richt JA, Stitz L, Wekerle H, Rott R (1989) Borna disease, a progressive meningoencephalomyelitis as a model for CD4+ T cell-mediated immunopathology in the brain. J Exp Med 170:1045–1050

    CAS  PubMed  Google Scholar 

  • Rivera-Quiñones C, McGavern D, Schmelzer JD, Hunter SF, Low PA, Rodriguez M (1998) Absence of neurological deficits following extensive demyelination in a class I-deficient murine model of multiple sclerosis. Nat Med 4:187–193

    PubMed  Google Scholar 

  • Rodriguez M, David CS (1995) H-2 D d transgene suppresses Theiler’s virus-induced demyelination in susceptible strains of mice. J NeuroVirol 1:111–117

    CAS  PubMed  Google Scholar 

  • Rodriguez M, Leibowitz J, David CS (1986) Susceptibility to Theiler’s virus-induced demyelination. Mapping of the gene within the H-2D region. J Exp Med 163:620–631

    CAS  PubMed  Google Scholar 

  • Rodriguez M, Patick AK, Pease LR, David CS (1992) Role of T cell receptor Vβ genes in Theiler’s virus-induced demyelination of mice. J Immunol 148:921–927

    CAS  PubMed  Google Scholar 

  • Rodriguez M, Prayoonwiwat N, Zhou P, David C (1993) Expression of T cell receptor Vβ transcripts in central nervous system of mice susceptible and resistant to Theiler’s virus-induced demyelination. J Neuroimmunol 47:95–100

    CAS  PubMed  Google Scholar 

  • Romanova LI, Lidsky PV, Kolesnikova MS, Fominykh KV, Gmyl AP, Sheval EV, Hato SV, van Kuppeveld FJM, Agol VI (2009) Antiapoptotic activity of the cardiovirus leader protein, a viral “security” protein. J Virol 83:7273–7284

    CAS  PubMed  Google Scholar 

  • Roos RP, Wollmann R (1984) DA strain of Theiler’s murine encephalomyelitis virus induces demyelination in nude mice. Ann Neurol 15:494–499

    CAS  PubMed  Google Scholar 

  • Rose JW, Hill KE, Wada Y, Kurtz CIB, Tsunoda I, Fujinami RS, Cross AH (1998) Nitric oxide synthase inhibitor, aminoguanidine, reduces inflammation and demyelination produced by Theiler’s virus infection. J Neuroimmunol 81:82–89

    CAS  PubMed  Google Scholar 

  • Rose JW, Welsh CT, Hill KE, Houtchens MK, Fujinami RS, Townsend JJ (1999) Contrasting effects of anti-adhesion molecule therapy in experimental allergic encephalomyelitis and Theiler’s murine encephalomyelitis. J Neuroimmunol 97:110–118

    CAS  PubMed  Google Scholar 

  • Rosenthal A, Fujinami RS, Lampert PW (1986) Mechanism of Theiler’s virus-induced demyelination in nude mice. Lab Invest 54:515–522

    CAS  PubMed  Google Scholar 

  • Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW (1993) Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci USA 90:6591–6595

    CAS  PubMed  Google Scholar 

  • Satoh J, Nakanishi M, Koike F, Miyake S, Yamamoto T, Kawai M, Kikuchi S, Nomura K, Yokoyama K, Ota K, Kanda T, Fukazawa T, Yamamura T (2005) Microarray analysis identifies an aberrant expression of apoptosis and DNA damage-regulatory genes in multiple sclerosis. Neurobiol Dis 18:537–550

    CAS  PubMed  Google Scholar 

  • Schlitt BP, Felrice M, Jelachich ML, Lipton HL (2003) Apoptotic cells, including macrophages, are prominent in Theiler’s virus-induced inflammatory, demyelinating lesions. J Virol 77:4383–4388

    CAS  PubMed  Google Scholar 

  • Shahar A, Frankel G, David Y, Friedmann A (1986) In vitro cytotoxicity and demyelination induced by Theiler viruses in cultures of spinal cord slices. J Neurosci Res 16:671–681

    CAS  PubMed  Google Scholar 

  • Sharma R, Narayana PA, Wolinsky JS (2001) Grey matter abnormalities in multiple sclerosis: proton magnetic resonance spectroscopic imaging. Mult Scler 7:221–226

    CAS  PubMed  Google Scholar 

  • Shriver LP, Dittel BN (2006) T-cell-mediated disruption of the neuronal microtubule network: correlation with early reversible axonal dysfunction in acute experimental autoimmune encephalomyelitis. Am J Pathol 169:999–1011

    CAS  PubMed  Google Scholar 

  • Siegel BV (1961) Identification of virus isolated from Hodgkin’s disease lymph nodes serially passaged in mouse brain. Virology 14:378–379

    Google Scholar 

  • Smith JP, Morris-Downes M, Brennan FR, Wallace GJ, Amor S (2000) A role for α4-integrin in the pathology following Semliki Forest virus infection. J Neuroimmunol 106:60–68

    CAS  PubMed  Google Scholar 

  • So EY, Kang MH, Kim BS (2006) Induction of chemokine and cytokine genes in astrocytes following infection with Theiler’s murine encephalomyelitis virus is mediated by the Toll-like receptor 3. Glia 53:858–867

    PubMed  Google Scholar 

  • Son K-N, Pugazhenthi S, Lipton HL (2009) Activation of tumor suppressor protein p53 is required for Theiler’s murine encephalomyelitis virus-induced apoptosis in M1-D macrophages. J Virol 83:10770–10777

    CAS  PubMed  Google Scholar 

  • Steurbaut S, Rombaut B, Vrijsen R (2006) Persistent infection of RAW264.7 macrophages with the DA strain of Theiler’s murine encephalomyelitis virus: an in vitro model to study viral persistence. J NeuroVirol 12:108–115

    PubMed  Google Scholar 

  • Stroop WG, Baringer JR, Brahic M (1981) Detection of Theiler’s virus RNA in mouse central nervous system by in situ hybridization. Lab Invest 45:504–509

    CAS  PubMed  Google Scholar 

  • Stroop WG, Brahic M, Baringer JR (1982) Detection of tissue culture-adapted Theiler’s virus RNA in spinal cord white matter cells throughout infection. Infect Immun 37:763–770

    CAS  PubMed  Google Scholar 

  • Theiler M (1934) Spontaneous encephalomyelitis of mice—a new virus disease. Science 80:122

    CAS  PubMed  Google Scholar 

  • Theiler M (1937) Spontaneous encephalomyelitis of mice, a new virus disease. J Exp Med 65:705–719

    CAS  PubMed  Google Scholar 

  • Tolley ND, Tsunoda I, Fujinami RS (1999) DNA vaccination against Theiler’s murine encephalomyelitis virus leads to alterations in demyelinating disease. J Virol 73:993–1000

    CAS  PubMed  Google Scholar 

  • Tracy S, Chapman NM, Drescher KM, Kono K, Tapprich W (2006) Evolution of virulence in picornaviruses. Curr Top Microbiol Immunol 299:193–209

    CAS  PubMed  Google Scholar 

  • Trottier M, Kallio P, Wang W, Lipton HL (2001) High numbers of viral RNA copies in the central nervous system of mice during persistent infection with Theiler’s virus. J Virol 75:7420–7428

    CAS  PubMed  Google Scholar 

  • Tsunoda I (2008) Axonal degeneration as a self-destructive defense mechanism against neurotropic virus infection. Future Virol 3:579–593

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Fujinami RS (1996) Two models for multiple sclerosis: experimental allergic encephalomyelitis and Theiler’s murine encephalomyelitis virus. J Neuropathol Exp Neurol 55:673–686

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Fujinami RS (1999) Theiler’s murine encephalomyelitis virus. In: Ahmed R, Chen ISY (eds) Persistent viral infections. Wiley, Chichester, pp 517–536

    Google Scholar 

  • Tsunoda I, Fujinami RS (2002) Inside-out versus outside-in models for virus induced demyelination: axonal damage triggering demyelination. Springer Semin Immunopathol 24:105–125

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Fujinami RS (2005) TMEV and neuroantigens: Myelin genes and proteins, molecular mimicry, epitope spreading, and autoantibody-mediated remyelination. In: Lavi E, Constantinescu CS (eds) Experimental models of multiple sclerosis. Springer, New York, pp 593–616

    Google Scholar 

  • Tsunoda I, Iwasaki Y, Terunuma H, Sako K, Ohara Y (1996) A comparative study of acute and chronic diseases induced by two subgroups of Theiler’s murine encephalomyelitis virus. Acta Neuropathol (Berl) 91:595–602

    CAS  Google Scholar 

  • Tsunoda I, Kurtz CIB, Fujinami RS (1997) Apoptosis in acute and chronic central nervous system disease induced by Theiler’s murine encephalomyelitis virus. Virology 228:388–393

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Tolley ND, Theil DJ, Whitton JL, Kobayashi H, Fujinami RS (1999) Exacerbation of viral and autoimmune animal models for multiple sclerosis by bacterial DNA. Brain Pathol 9:481–493

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Kuang L-Q, Theil DJ, Fujinami RS (2000) Antibody association with a novel model for primary progressive multiple sclerosis: induction of relapsing-remitting and progressive forms of EAE in H2 S mouse strains. Brain Pathol 10:402–418

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Kuang L-Q, Fujinami RS (2002) Induction of autoreactive CD8+ cytotoxic cells during Theiler’s murine encephalomyelitis virus infection: implications for autoimmunity. J Virol 76:12834–12844

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Kuang L-Q, Libbey JE, Fujinami RS (2003) Axonal injury heralds virus-induced demyelination. Am J Pathol 162:1259–1269

    PubMed  Google Scholar 

  • Tsunoda I, Lane TE, Blackett J, Fujinami RS (2004) Distinct roles for IP-10/CXCL10 in three animal models, Theiler’s virus infection, EAE, and MHV infection, for multiple sclerosis: implication of differing roles for IP-10. Mult Scler 10:26–34

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Kuang L-Q, Kobayashi-Warren M, Fujinami RS (2005a) Central nervous system pathology caused by autoreactive CD8+ T cell clones following virus infection. J Virol 79:14640–14646

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Libbey JE, Kuang L-Q, Terry EJ, Fujinami RS (2005b) Massive apoptosis in lymphoid organs in animal models for primary and secondary progressive multiple sclerosis. Am J Pathol 167:1631–1646

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Libbey JE, Kobayashi-Warren M, Fujinami RS (2006) IFN-γ production and astrocyte recognition by autoreactive T cells induced by Theiler’s virus infection: role of viral strains and capsid proteins. J Neuroimmunol 172:85–93

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Libbey JE, Fujinami RS (2007a) TGF-β1 suppresses T cell infiltration and VP2 puff B mutation enhances apoptosis in acute polioencephalitis induced by Theiler’s virus. J Neuroimmunol 190:80–89

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Tanaka T, Saijoh Y, Fujinami RS (2007b) Targeting inflammatory demyelinating lesions to sites of Wallerian degeneration. Am J Pathol 171:1563–1575

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Tanaka T, Terry EJ, Fujinami RS (2007c) Contrasting roles for axonal degeneration in an autoimmune versus viral model for multiple sclerosis: when can axonal injury be beneficial? Am J Pathol 170:214–226

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Terry EJ, Marble BJ, Lazarides E, Woods CM, Fujinami RS (2007d) Modulation of experimental autoimmune encephalomyelitis by VLA-2 blockade. Brain Pathol 17:45–55

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Kobayashi-Warren M, Libbey JE, Fujinami RS (2008) Central nervous system degeneration caused by autoimmune cytotoxic CD8+ T cell clones and hybridomas. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, New York, pp 619–625

    Google Scholar 

  • Turrin NP (2008) Central nervous system Toll-like receptor expression in response to Theiler’s murine encephalomyelitis virus-induced demyelination disease in resistant and susceptible mouse strains. Virol J 5:154

    PubMed  Google Scholar 

  • Ulrich R, Kalkuhl A, Deschl U, Baumgärtner W (2009) Machine learning approach identifies new pathways associated with demyelination in a viral model of multiple sclerosis. J Cell Mol Med doi:10.1111/j.1582-4934.2008.00646.x

  • Ure DR, Rodriguez M (2002) Preservation of neurologic function during inflammatory demyelination correlates with axon sparing in a mouse model of multiple sclerosis. Neuroscience 111:399–411

    CAS  PubMed  Google Scholar 

  • Ure DR, Rodriguez M (2005) Histopathology in the Theiler’s virus model of demyelination. In: Lavi E, Constantinescu CS (eds) Experimental models of multiple sclerosis. Springer, New York, pp 579–591

    Google Scholar 

  • Ure DR, McGavern DB, Sathornsumetee S, Rodriguez M (2001) The contribution of axonal injury to neurologic dysfunction in Theiler’s virus-induced inflammatory demyelinating disease. In: Hommes OR, Clanet M, Wekerle H (eds) Genes and viruses in multiple sclerosis. Elsevier, Amsterdam, pp 79–88

    Google Scholar 

  • Usherwood EJ, Johnston IC, Lovelidge LJ, Tonks P, Nash AA (1995) Lymphocyte recognition elements on the VP1 protein of Theiler’s virus. Immunology 85:190–197

    CAS  PubMed  Google Scholar 

  • Van Assche G, Van Ranst M, Sciot R, Dubois B, Vermeire S, Noman M, Verbeeck J, Geboes K, Robberecht W, Rutgeerts P (2005) Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N Engl J Med 353:362–368

    PubMed  Google Scholar 

  • Verdun E, Isoardo G, Oggero A, Ferrero B, Ghezzi A, Montanari E, Zaffaroni M, Durelli L (2002) Autoantibodies in multiple sclerosis patients before and during IFN-beta 1b treatment: are they correlated with the occurrence of autoimmune diseases? J Interferon Cytokine Res 22:245–255

    CAS  PubMed  Google Scholar 

  • Welsh RM, Selin LK (2002) No one is naive: the significance of heterologous T-cell immunity. Nat Rev Immunol 2:417–426

    CAS  PubMed  Google Scholar 

  • Wroblewska Z, Gilden DH, Wellish M, Rorke LB, Warren KG, Wolinsky JS (1977) Virus-specific intracytoplasmic inclusions in mouse brain produced by a newly isolated strain of Theiler virus. I. Virologic and morphologic studies. Lab Invest 37:595–602

    CAS  PubMed  Google Scholar 

  • Wroblewska Z, Kim SU, Sheffield WD, Gilden DH (1979) Growth of the WW strain of Theiler virus in mouse central nervous system organotypic culture. Acta Neuropathol (Berl) 47:13–19

    CAS  Google Scholar 

  • Yamada M, Zurbriggen A, Fujinami RS (1990) Monoclonal antibody to Theiler’s murine encephalomyelitis virus defines a determinant on myelin and oligodendrocytes, and augments demyelination in experimental allergic encephalomyelitis. J Exp Med 171:1893–1907

    CAS  PubMed  Google Scholar 

  • Yauch RL, Kim BS (1994) A predominant viral epitope recognized by T cells from the periphery and demyelinating lesions of SJL/J mice infected with Theiler’s virus is located within VP1233–244. J Immunol 153:4508–4519

    CAS  PubMed  Google Scholar 

  • Yauch RL, Kerekes K, Saujani K, Kim BS (1995) Identification of a major T-cell epitope within VP3 amino acid residues 24 to 37 of Theiler’s virus in demyelination-susceptible SJL/J mice. J Virol 69:7315–7318

    CAS  PubMed  Google Scholar 

  • Yauch RL, Palma JP, Yahikozawa H, Koh C-S, Kim BS (1998) Role of individual T-cell epitopes of Theiler’s virus in the pathogenesis of demyelination correlates with the ability to induce a Th1 response. J Virol 72:6169–6174

    CAS  PubMed  Google Scholar 

  • Zhu B, Luo L, Moore GRW, Paty DW, Cynader MS (2003) Dendritic and synaptic pathology in experimental autoimmune encephalomyelitis. Am J Pathol 162:1639–1650

    PubMed  Google Scholar 

  • Zoecklein LJ, Pavelko KD, Gamez J, Papke L, McGavern DB, Ure DR, Njenga MK, Johnson AJ, Nakane S, Rodriguez M (2003) Direct comparison of demyelinating disease induced by the Daniels strain and BeAn strain of Theiler’s murine encephalomyelitis virus. Brain Pathol 13:291–308

    PubMed  Google Scholar 

  • Zurbriggen A, Hogle JM, Fujinami RS (1989) Alteration of amino acid 101 within capsid protein VP-1 changes the pathogenicity of Theiler’s murine encephalomyelitis virus. J Exp Med 170:2037–2049

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nikki J. Kirkman BS and Jane E. Libbey MS for many helpful discussions, and Daniel Doty, Faris Hasanovic BS, Krystal D. Porter BS, and Reina Yamaji MD for excellent technical assistance. We are grateful to Ms. Kathleen Borick for preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Fujinami.

Additional information

This work was supported by NIH grants 1R21NS059724 (IT) and 1P01AI058105 (RSF).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsunoda, I., Fujinami, R.S. Neuropathogenesis of Theiler’s Murine Encephalomyelitis Virus Infection, An Animal Model for Multiple Sclerosis. J Neuroimmune Pharmacol 5, 355–369 (2010). https://doi.org/10.1007/s11481-009-9179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-009-9179-x

Keywords

Navigation