Skip to main content

Advertisement

Log in

Suppression of CCL2/MCP-1 and CCL5/RANTES Expression by Nociceptin in Human Monocytes

  • Original Article
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

The receptor designated Opioid Receptor-Like 1 (ORL1) is abundantly expressed in the central nervous system (CNS) as well as by cells of the immune system. While much is known about the function of ORL1 in the CNS, there is little information in the literature about the role of ORL1 in the immune response. There have been numerous reports documenting the effects of GPCR activation on the expression of chemokines crucial in mediating inflammatory events in biological systems. The aim of the present work was to examine the effect of nociceptin administration on the pro-inflammatory chemokine expression of human monocytes. We report here that human CD14+ monocytes expresses the mRNA for ORL1. Our results also demonstrate that nociceptin can suppress the production of CCL2/MCP-1 and CCL5/RANTES chemokine protein in both primary CD14+ human monocytes and monocyte-like cell lines. However, nociceptin does not appear to regulate the expression of these chemokines at the level of transcription, as CCL2/MCP-1 and CCL5/RANTES mRNA levels following nociceptin treatment of monocytes were essentially normal. Although the mechanism of chemokine regulation by nociceptin is as yet unknown, it is evident that the ORL1/nociceptin system plays a role in regulating chemotactic responses of leukocytes through chemokine suppression. Finally, these data may provide the initial basis for the development of ORL1 agonists and antagonists for therapeutic treatment of inflammatory disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anders HJ, Frink M, Linde Y, Banas B, Wornle M, Cohen CD, Vielhauer V, Nelson PJ, Grone HJ, Schlondorff D (2003) CC chemokine ligand 5/RANTES chemokine antagonists aggravate glomerulonephritis despite reduction of glomerular leukocyte infiltration. J Immunol 170:5658–5666

    PubMed  CAS  Google Scholar 

  • Bunzow JR, Saez C, Mortrud M, Bouvier C, Williams JT, Low M, Grandy DK (1994) Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett 347:284–288

    Article  PubMed  CAS  Google Scholar 

  • Carr MW, Roth SJ, Luther E, Rose SS, Springer TA (1994) Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci USA 91:3652–3656

    Article  PubMed  CAS  Google Scholar 

  • Civelli O (2005) GPCR deorphanizations: the novel, the known and the unexpected transmitters. Trends Pharmacol Sci 26:15–19

    Article  PubMed  CAS  Google Scholar 

  • Comerford I, Nibbs RJ (2005) Post-translational control of chemokines: a role for decoy receptors? Immunol Lett 96:163–174

    Article  PubMed  CAS  Google Scholar 

  • Danek A, O’Dorisio MS, O’Dorisio TM, George JM (1983) Specific binding sites for vasoactive intestinal polypeptide on nonadherent peripheral blood lymphocytes. J Immunol 131:1173–1177

    PubMed  CAS  Google Scholar 

  • Delgado M, Pozo D, Ganea D (2004) The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev 56:249–290

    Article  PubMed  CAS  Google Scholar 

  • Dumoulin FL, Nischalke HD, Leifeld L, von dem Bussche A, Rockstroh JK, Sauerbruch T, Spengler U (2000) Semi-quantification of human C–C chemokine mRNAs with reverse transcription/real time PCR using multi-specific standards. J Immunol Methods 241:109–119

    Article  PubMed  CAS  Google Scholar 

  • El-Hage N, Gurwell JA, Singh IN, Knapp PE, Nath A, Hauser KF (2005) Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat. Glia 50:91–106

    Article  PubMed  Google Scholar 

  • El-Hage N, Wu G, Wang J, Ambati J, Knapp PE, Reed JL, Bruce-Keller AJ, Hauser KF (2006) HIV-1 Tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines. Glia 53:132–146

    Article  PubMed  Google Scholar 

  • Fiset ME, Gilbert C, Poubelle PE, Pouliot M (2003) Human neutrophils as a source of nociceptin: a novel link between pain and inflammation. Biochemistry 42:10498–10505

    Article  PubMed  CAS  Google Scholar 

  • Fukuda K, Kato S, Mori K, Nishi M, Takeshima H, Iwabe N, Miyata T, Houtani T, Sugimoto T (1994) cDNA cloning and regional distribution of a novel member of the opioid receptor family. FEBS Lett 343:42–46

    Article  PubMed  CAS  Google Scholar 

  • Guerrero JM, Prieto JC, Elorza FL, Ramirez R, Goberna R (1981) Interaction of vasoactive intestinal peptide with human blood mononuclear cells. Mol Cell Endocrinol 21:151–160

    Article  PubMed  CAS  Google Scholar 

  • Hantos MB, Szalay F, Lakatos PL, Hegedus D, Firneisz G, Reiczigel J, Torok T, Tekes K (2002) Elevated plasma nociceptin level in patients with Wilson disease. Brain Res Bull 58:311–313

    Article  PubMed  CAS  Google Scholar 

  • Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  CAS  Google Scholar 

  • Horvath A, Folhoffer A, Lakatos PL, Halosz J, Illyes G, Schaff Z, Hantos MB, Tekes K, Szalay F (2004) Rising plasma nociceptin level during development of HCC: a case report. World J Gastroenterol 10:152–154

    PubMed  Google Scholar 

  • Klein TW, Newton CA, Nakachi N, Friedman H (2000) Delta 9-tetrahydrocannabinol treatment suppresses immunity and early IFN-gamma, IL-12, and IL-12 receptor beta 2 responses to Legionella pneumophila infection. J Immunol 164:6461–6466

    PubMed  CAS  Google Scholar 

  • Kurihara T, Warr G, Loy J, Bravo R (1997) Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med 186:1757–1762

    Article  PubMed  CAS  Google Scholar 

  • Kuziel WA, Morgan SJ, Dawson TC, Griffin S, Smithies O, Ley K, Maeda N (1997) Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci USA 94:12053–12058

    Article  PubMed  CAS  Google Scholar 

  • Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B (1996) Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J Immunol 156:322–327

    PubMed  CAS  Google Scholar 

  • Mahajan SD, Schwartz SA, Aalinkeel R, Chawda RP, Sykes DE, Nair MP (2005) Morphine modulates chemokine gene regulation in normal human astrocytes. Clin Immunol 115:323–332

    Article  PubMed  CAS  Google Scholar 

  • Mahajan SD, Schwartz SA, Shanahan TC, Chawda RP, Nair MP (2002) Morphine regulates gene expression of alpha- and beta-chemokines and their receptors on astroglial cells via the opioid mu receptor. J Immunol 169:3589–3599

    PubMed  CAS  Google Scholar 

  • Mandyam CD, Thakker DR, Christensen JL, Standifer KM (2002) Orphanin FQ/nociceptin-mediated desensitization of opioid receptor-like 1 receptor and mu opioid receptors involves protein kinase C: a molecular mechanism for heterologous cross-talk. J Pharmacol Exp Ther 302:502–509

    Article  PubMed  CAS  Google Scholar 

  • McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I, Overall CM (2001) Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 276:43503–43508

    Article  PubMed  CAS  Google Scholar 

  • McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM (2000) Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289:1202–1206

    Article  PubMed  CAS  Google Scholar 

  • McQuibban GA, Gong JH, Wong JP, Wallace JL, Clark-Lewis I, Overall CM (2002) Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100:1160–1167

    PubMed  CAS  Google Scholar 

  • Mollereau C, Parmentier M, Mailleux P, Butour JL, Moisand C, Chalon P, Caput D, Vassart G, Meunier JC (1994) ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett 341:33–38

    Article  PubMed  CAS  Google Scholar 

  • Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    Article  PubMed  CAS  Google Scholar 

  • Ottaway CA, Bernaerts C, Chan B, Greenberg GR (1983) Specific binding of vasoactive intestinal peptide to human circulating mononuclear cells. Can J Physiol Pharmacol 61:664–671

    PubMed  CAS  Google Scholar 

  • Pampusch MS, Serie JR, Osinski MA, Seybold VS, Murtaugh MP, Brown DR (2000) Expression of nociceptin/OFQ receptor and prepro-nociceptin/OFQ in lymphoid tissues. Peptides 21:1865–1870

    Article  PubMed  CAS  Google Scholar 

  • Peluso J, Gaveriaux-Ruff C, Matthes HW, Filliol D, Kieffer BL (2001) Orphanin FQ/nociceptin binds to functionally coupled ORL1 receptors on human immune cell lines and alters peripheral blood mononuclear cell proliferation. Brain Res Bull 54:655–660

    Article  PubMed  CAS  Google Scholar 

  • Peluso J, LaForge KS, Matthes HW, Kreek MJ, Kieffer BL, Gaveriaux-Ruff C (1998) Distribution of nociceptin/orphanin FQ receptor transcript in human central nervous system and immune cells. J Neuroimmunol 81:184–192

    Article  PubMed  CAS  Google Scholar 

  • Proost P, Struyf S, Couvreur M, Lenaerts JP, Conings R, Menten P, Verhaert P, Wuyts A, Van Damme J (1998) Posttranslational modifications affect the activity of the human monocyte chemotactic proteins MCP-1 and MCP-2: identification of MCP-2(6–76) as a natural chemokine inhibitor. J Immunol 160:4034–4041

    PubMed  CAS  Google Scholar 

  • Rogers TJ, Peterson PK (2003) Opioid G protein-coupled receptors: signals at the crossroads of inflammation. Trends Immunol 24:116–121

    Article  PubMed  CAS  Google Scholar 

  • Sarada B, Thiele D, Dang T, Lee J, Safavia A, Hersh LB, Cottam GL (1998) Anti-CD3 activation of human CD4+ T cells increases expression of the intracellular beta-endorphin endopeptidase (IDE/gamma-EpGE). J Neuroimmunol 85:59–68

    Article  PubMed  CAS  Google Scholar 

  • Serhan CN, Fierro IM, Chiang N, Pouliot M (2001) Cutting edge: nociceptin stimulates neutrophil chemotaxis and recruitment: inhibition by aspirin-triggered-15-epi-lipoxin A4. J Immunol 166:3650–3654

    PubMed  CAS  Google Scholar 

  • Szalay F, Hantos MB, Horvath A, Lakatos PL, Folhoffer A, Dunkel K, Hegedus D, Tekes K (2004) Increased nociceptin/orphanin FQ plasma levels in hepatocellular carcinoma. World J Gastroenterol 10:42–45

    PubMed  CAS  Google Scholar 

  • Taub DD, Proost P, Murphy WJ, Anver M, Longo DL, Van Damme J, Oppenheim JJ (1995) Monocyte chemotactic protein-1 (MCP-1), -2, and -3 are chemotactic for human T lymphocytes. J Clin Invest 95:1370–1376

    Article  PubMed  CAS  Google Scholar 

  • Thiele DL, Sarada B, Dang T, Safavi A, Hersh LB, Cottam GL (1998) Regulated expression of an endopeptidase that hydrolyses beta-endorphin during differentiation of macrophages and T cells. Adv Exp Med Biol 437:291–300

    PubMed  CAS  Google Scholar 

  • Trombella S, Vergura R, Falzarano S, Guerrini R, Calo G, Spisani S (2005) Nociceptin/orphanin FQ stimulates human monocyte chemotaxis via NOP receptor activation. Peptides 26:1497–1502

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Yamaguchi T, Tokuyama S, Inoue M, Nishi M, Takeshima H (1997) Partial loss of tolerance liability to morphine analgesia in mice lacking the nociceptin receptor gene. Neurosci Lett 237:136–138

    Article  PubMed  CAS  Google Scholar 

  • Valente AJ, Graves DT, Vialle-Valentin CE, Delgado R, Schwartz CJ (1988) Purification of a monocyte chemotactic factor secreted by nonhuman primate vascular cells in culture. Biochemistry 27:4162–4168

    Article  PubMed  CAS  Google Scholar 

  • Waits PS, Purcell WM, Fulford AJ, McLeod JD (2004) Nociceptin/orphanin FQ modulates human T cell function in vitro. J Neuroimmunol 149:110–120

    Article  PubMed  CAS  Google Scholar 

  • Wang JB, Johnson PS, Imai Y, Persico AM, Ozenberger BA, Eppler CM, Uhl GR (1994) cDNA cloning of an orphan opiate receptor gene family member and its splice variant. FEBS Lett 348:75–79

    Article  PubMed  CAS  Google Scholar 

  • Wetzel MA, Steele AD, Eisenstein TK, Adler MW, Henderson EE, Rogers TJ (2000) Mu-opioid induction of monocyte chemoattractant protein-1, RANTES, and IFN-gamma-inducible protein-10 expression in human peripheral blood mononuclear cells. J Immunol 165:6519–6524

    PubMed  CAS  Google Scholar 

  • Wiik P, Opstad PK, Boyum A (1985) Binding of vasoactive intestinal polypeptide (VIP) by human blood monocytes: demonstration of specific binding sites. Regul Pept 12:145–153

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Wu GC, Cao XD (2002) Immunomodulatory activity of orphanin FQ/nociceptin on traumatic rats. Acta Pharmacol Sin 23:343–348

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the support provided by NIH grants DA16544 (TJR), DA14230 (TJR), DA13429 (TJR), DA06650 (TJR), and T32DA07237 (DEK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Rogers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaminsky, D.E., Rogers, T.J. Suppression of CCL2/MCP-1 and CCL5/RANTES Expression by Nociceptin in Human Monocytes. J Neuroimmune Pharmacol 3, 75–82 (2008). https://doi.org/10.1007/s11481-007-9086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-007-9086-y

Keywords

Navigation