Skip to main content
Log in

Modeling and Performance Analysis of an Advanced Hybrid Surface Plasmon Resonance (SPR) Sensor Employing Indium Tin Oxide-Phosphorene Hetero Structure

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A highly sensitive surface plasmon resonance (SPR) sensor employing ITO (indium tin oxide) as well as phosphorene is suggested with a hybrid structured design through comprehensive numerical simulations as a hopeful optical approach used in a wide range of applications across a diverse range of boundaries is suggested in this paper. The broadly utilized transfer matrix method (TMM) was employed to study and evaluate the suggested sensor performance. The figure of merit (FOM), sensitivity, reflectivity, and detection accuracy (DA) were all used to evaluate the sensor performance. In order to ameliorate performances, the sensor construction was enhanced by modifying several structural characteristics of the hybrid design. The results showed that putting ITO and phosphorene over the gold layer of the traditional construction increased the sensor performance with a topmost sensitivity of 238 deg/RIU and a FOM of 27.076 RIU-1. With such high detecting characteristics, the suggested sensor might be used in a variety of bio-sensing applications to identify liquid compounds or solutes that are biological and biochemical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Homola J, Piliarik M (2006) Surface plasmon resonance (SPR) sensors,” in Surface plasmon resonance based sensors, ed. Springer, pp. 45–67

  2. Zeng B, Gao Y, Bartoli FJ (2015) Differentiating surface and bulk interactions in nanoplasmonicinterferometric sensor arrays. Nanoscale 7:166–170

    Article  CAS  PubMed  Google Scholar 

  3. Basak C, Hosain MK, Sazzad AA (2020) Design and simulation of a high sensitive surface plasmon resonance biosensor for detection of biomolecules. Sensing and Imaging 21:1–19

    Article  Google Scholar 

  4. Rahman MM, Molla MA, Paul AK, Based MA, Rana MM, Anower M (2020) Numerical investigation of a highly sensitive plasmonic refractive index sensor utilizing hexagonal lattice of photonic crystal fiber. Results in Physics 18:103313

    Article  Google Scholar 

  5. Sharma AK, Pandey AK (2018) ”Blue phosphorene/MoS 2 heterostructure based SPR sensor with enhanced sensitivity. IEEE Photonics Technol Lett 30:595–598

    Article  CAS  Google Scholar 

  6. Wu L, Guo J, Wang Q, Lu S, Dai X, Xiang Y et al (2017) Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens Actuators, B Chem 249:542–548

    Article  CAS  Google Scholar 

  7. Zhao Y, Tong R-J, Xia F, Peng Y (2019) Current status of optical fiber biosensor based on surface plasmon resonance. Biosens Bioelectron 142:111505

    Article  CAS  PubMed  Google Scholar 

  8. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors. Sens Actuators, B Chem 54:3–15

    Article  CAS  Google Scholar 

  9. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  PubMed  Google Scholar 

  10. Murphy C, Stack E, Krivelo S, McPartlin DA, Byrne B, Greef C et al (2015) Detection of the cyanobacterial toxin, microcystin-LR, using a novel recombinant antibody-based optical-planar waveguide platform. Biosens Bioelectron 67:708–714

    Article  CAS  PubMed  Google Scholar 

  11. Rahman MS, Anower MS, Hasan MR, Hossain MB, Haque MI (2017) Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Optics Communications 396:36–43

    Article  CAS  Google Scholar 

  12. Kozma P, Hamori A, Cottier K, Kurunczi S, Horvath R (2009) Grating coupled interferometry for optical sensing. Appl Phys B 97:5–8

    Article  CAS  Google Scholar 

  13. Giallorenzi TG, Bucaro JA, Dandridge A, Sigel GH, Cole JH, Rashleigh SC et al (1982) Optical fiber sensor technology. IEEE Trans Microw Theory Tech 30:472–511

    Article  Google Scholar 

  14. Chou C, Wu H-T, Huang Y-C, Chen Y-L, Kuo W-C (2006) Characteristics of a paired surface plasma waves biosensor. Opt Express 14:4307–4315

    Article  CAS  PubMed  Google Scholar 

  15. Gao L, Huang Y, Li S, Ye H (2011) “Sensor based on angular interrogation of surface plasmon resonance by using an elliptical reflector structure”, in. Functional Optical Imaging 2011:1–1

    Google Scholar 

  16. Verma A, Prakash A, Tripathi R (2015) Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Optics communications 357:106–112

    Article  CAS  Google Scholar 

  17. Leong H-S, Guo J, Lindquist RG, Liu QH (2009) Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration. J Appl Phys 106:124314

    Article  Google Scholar 

  18. Wang L, Sun Y, Wang J, Zhu X, Jia F, Cao Y et al (2009) Sensitivity enhancement of SPR biosensor with silver mirror reaction on the Ag/Au film. Talanta 78:265–269

    Article  CAS  PubMed  Google Scholar 

  19. Shalabney A, Abdulhalim I (2011) Sensitivityenhancement methods for surface plasmon sensors. Laser Photonics Rev 5:571–606

    Article  CAS  Google Scholar 

  20. Dostalek J, Čtyroký J, Homola J, Brynda E, Skalský M, Nekvindova P et al (2001) Surface plasmon resonance biosensor based on integrated optical waveguide. Sens Actuators, B Chem 76:8–12

    Article  CAS  Google Scholar 

  21. Kuo W-C, Chou C, Wu H-T (2003) Optical heterodyne surface-plasmon resonance biosensor. Opt Lett 28:1329–1331

    Article  PubMed  Google Scholar 

  22. Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001

    Article  CAS  PubMed  Google Scholar 

  23. Yim C, Lee K, McEvoy N, O’Brien M, Riazimehr S, Berner NC et al (2016) ”High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano 10:9550–9558

    Article  CAS  PubMed  Google Scholar 

  24. Lu J, Bao D-L, Qian K, Zhang S, Chen H, Lin X et al (2017) Identifying and visualizing the edge terminations of single-layer MoSe2 island epitaxially grown on au (111). ACS Nano 11:1689–1695

    Article  CAS  PubMed  Google Scholar 

  25. Zhuang HL, Hennig RG (2013) Computational search for single-layer transition-metal dichalcogenidephotocatalysts. The Journal of Physical Chemistry C 117:20440–20445

    Article  CAS  Google Scholar 

  26. Li P, Li L, Zeng XC (2016) Tuning the electronic properties of monolayer and bilayer PtSe 2 via strain engineering. Journal of Materials Chemistry C 4:3106–3112

    Article  CAS  Google Scholar 

  27. Jia Y, Li Z, Wang H, Saeed M, Cai H (2020) Sensitivity enhancement of a surface plasmon resonance sensor with platinum diselenide. Sensors 20:131

    Article  CAS  Google Scholar 

  28. Nurrohman DT, Chiu N-F (2020) Surface plasmon resonance biosensor performance analysis on 2D material based on graphene and transition metal dichalcogenides. ECS J Solid State Sci Technol 9:115023

    Article  CAS  Google Scholar 

  29. Lin Z, Chen S, Lin C (2020) Sensitivity improvement of a surface plasmon resonance sensor based on two-dimensional materials hybrid structure in visible region: a theoretical study. Sensors 20:2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li L, Yu Y, Ye GJ, Chen XH, Zhang Y (2013) Electronic properties of few-layer black phosphorus. In: APS March Meeting Abstracts p. J6–013

  31. Qiao J, Kong X, Hu Z-X, Yang F, Ji W (2014) High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 5:1–7

    Article  Google Scholar 

  32. Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372

    Article  CAS  PubMed  Google Scholar 

  33. Meshginqalam B, Barvestani J (2018) Performance enhancement of SPR biosensor based on phosphorene and transition metal dichalcogenides for sensing DNA hybridization. IEEE Sens J 18:7537–7543

    Article  CAS  Google Scholar 

  34. Srivastava SK, Arora V, Sapra S, Gupta BD (2012) Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose. Plasmonics 7(2):261–268

    Article  CAS  Google Scholar 

  35. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539

    Article  CAS  PubMed  Google Scholar 

  36. Shahzad MK, Islam S, Kwak K-S, Nkenyereye L (2019) AEF: adaptive en-route filtering to extend network lifetime in wireless sensor networks. Sensors 19(18):4036

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim M, Park K, Jeong E-J, Shin Y-B, Chung BH (2006) Surface plasmon resonance imaging analysis of protein–protein interactions using on-chip-expressed capture protein. Anal Biochem 351(2):298–304

    Article  CAS  PubMed  Google Scholar 

  38. Madeira A, Vikeved E, Nilsson A, Sjögren B, Andrén PE, Svenningsson P (2011) Svenningsson, “Identification of protein‐protein interactions by surface plasmon resonance followed by mass spectrometry. Curr Protoc Protein Sci 65(1):19–21

  39. Kaufman BA et al (2007) The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell 18(9):3225–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Teh HF, Peh WY, Su X, Thomsen JS (2007) Characterization of protein− DNA interactions using surface plasmon resonance spectroscopy with various assay schemes. Biochemistry 46(8):2127–2135

    Article  CAS  PubMed  Google Scholar 

  41. Mollah MA, Yousufali M, Ankan IM, Rahman MM, Sarker H, Chakrabarti K (2020) Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sensing and Bio-Sensing Research 29:100344

    Article  Google Scholar 

  42. Phan Q-H, Lai Y-R, Xiao W-Z, Lien C-H (2020) ”Surface plasmon resonance prism coupler for enhanced circular birefringence sensing and application to non-invasive glucose detection. Opt Express 28(17):24889–24899

    Article  CAS  PubMed  Google Scholar 

  43. Sharma AK, Jha R (2009) Surface plasmon resonance-based gas sensor with chalcogenide glass and bimetallic alloy nanoparticle layer. J Appl Phys 106(10):103101

    Article  Google Scholar 

  44. Akowuah EK, Gorman T, Haxha S (2009) Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration. Opt Express 17:23511–23521

    Article  CAS  PubMed  Google Scholar 

  45. Achanta VG (2020) Surface waves at metal-dielectric interfaces: material science perspective. Reviews in Physics 5:100041

    Article  Google Scholar 

  46. Barchiesi D, Otto A (2013) Excitations of surface plasmonpolaritons by attenuated total reflection, revisited. La Rivista del NuovoCimento 36:173–209

    CAS  Google Scholar 

  47. Gupta B, Sharma AK (2005) Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sens Actuators, B Chem 107:40–46

    Article  CAS  Google Scholar 

  48. Rahman MM, Rana MM, Anower MS, Sakib N, Chakrabatri K, Paul AK (2020) An SPR-based optical biosensor with shared plasmonic materials and optimized graphene layer: an angular interrogation approach. In 2020 IEEE Region 10 Symposium (TENSYMP), pp 1680–1683

  49. Chia X, Adriano A, Lazar P, Sofer Z, Luxa J, Pumera M (2016) Layered platinum dichalcogenides (PtS2, PtSe2, and PtTe2) electrocatalysis: monotonic dependence on the chalcogen size. Adv Func Mater 26:4306–4318

    Article  CAS  Google Scholar 

  50. Pumera M (2011) Graphene in biosensing. Mater Today 14:308–315

    Article  CAS  Google Scholar 

  51. Hossain M, Rana M (2016) DNA hybridization detection based on resonance frequency readout in graphene on Au SPR biosensor. J Sens 2016

  52. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    Article  CAS  PubMed  Google Scholar 

  53. Anower MS, Rahman MM, Rahman MS (2020) Hybrid heterostructures for SPR biosensor. In: Biosensor-Current and Novel Strategies for Biosensing ed: IntechOpen, 2020

  54. Nafisah S, Morsin M, Jumadi NA, Nayan N, Shah NSM, Razali NL et al (2019) Improved sensitivity and selectivity of direct localized surface plasmon resonance sensor using gold nanobipyramids for glyphosate detection. IEEE Sens J 20:2378–2389

    Article  Google Scholar 

  55. Cennamo N, D’Agostino G, Pesavento M, Zeni L (2014) High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of L-nicotine. Sens Actuators, B Chem 191:529–536

    Article  CAS  Google Scholar 

  56. Gandhi MA, Senthilnathan K, Babu PR, Li Q (2019) Visible to near infrared highly sensitive microbiosensor based on surface plasmonpolariton with external sensing approach. Results in Physics 15:102590

    Article  Google Scholar 

  57. Mudgal N, Falaswal MK, Ismail T, Fahim IS, Tiwari M, Singh G (2020) Study of approaches to implement the prism-based surface plasmon resonance sensors. In: Optical and Wireless Technologies. Springer, pp 353–362

  58. Wittek CT et al (2016) Prevalence and predictors of video game addiction: a study based on a national representative sample of gamers. Int J Ment Heal Addict 14(5):672–686

    Article  Google Scholar 

  59. Hossain MB, Rana MM (2015) Graphene coated high sensitive surface plasmon resonance biosensor for sensing DNA hybridization. Sens Lett 13:1–8

    Google Scholar 

  60. Akib TBA et al (2021) Design and numerical analysis of a graphene-coated SPR biosensor for rapid detection of the novel coronavirus. Sensors 21(10):3491

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hossain MB, Kabir MA, Hossain MS, Islam KZ, Hossain MS, Pathan MI et al (2020) Numerical modeling of MoS2–graphene bilayer-based high-performance surface plasmon resonance sensor: structure optimization for DNA hybridization. Opt Eng 59:105105

    Article  CAS  Google Scholar 

  62. Rikta K, Anower M, Rahman MS, Rahman MM (2021) SPR biosensor using SnSe-phosphoreneheterostructure. Sens Bio-Sens Res 100442

  63. Rahman MM, Abdulrazak LF, Ahsan M, Based MA, Rana MM, Anower MS, Rikta KA, Haider J, Gurusamy S (2021) 2DNanomaterial-based hybrid structured (Au-WSe2-PtSe2-BP) surface plasmon resonance (SPR) sensor with improved performance. IEEE Access (99):1–1

Download references

Author information

Authors and Affiliations

Authors

Contributions

In this paper, all authors collaborated equally.

Corresponding authors

Correspondence to Amzad Hossain or Ahmed Nabih Zaki Rashed.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawad, A., Arifuzzaman, S., Anower, M.S. et al. Modeling and Performance Analysis of an Advanced Hybrid Surface Plasmon Resonance (SPR) Sensor Employing Indium Tin Oxide-Phosphorene Hetero Structure. Plasmonics 18, 1391–1401 (2023). https://doi.org/10.1007/s11468-023-01861-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01861-6

Keywords

Navigation