Skip to main content

Advertisement

Log in

Numerical Analysis of Ultra-broadband Metamaterial Absorber with High Absorption in the Visible and Infrared Regions

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Ultra-broadband and high absorption properties are significant for energy harvesting, solar cells, fire detection and imaging. An ultra-broadband and high absorption metamaterial absorber is proposed, which consists of a grid structure and a SiO2 rectangular structure. The simulation results of the metamaterial absorber show that the absorber has an absorption rate of more than 90% with a bandwidth of 3815 nm centered at about 2045 nm. Due to the asymmetry of the absorber structure, it is sensitive to the polarization angle, but still has certain polarization independence and wide-angle absorption characteristics in the whole band (300 ~ 4000 nm). The analysis shows that surface plasmon resonance, local surface plasmon resonance, cavity resonance, and coupling between resonant modes play a dominant role in the broadband and absorption of the absorber. The absorber with broadband and high absorption performance has great potential for solar energy harvesting, thermoelectric, and thermal emitter applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All the data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Huang L, Chowdhury DR, Ramani S et al (2012) Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Opt Lett 37(2):154–156

    Article  PubMed  Google Scholar 

  2. Zhang H, Cheng Y, Chen F (2021) Quad-band plasmonic perfect absorber using all-metal nanostructure metasurface for refractive index sensing. Optik 229:166300

    Article  CAS  Google Scholar 

  3. Cheng Y, Chen F, Luo H (2021) Plasmonic chiral metasurface absorber based on bilayer fourfold twisted semicircle nanostructure at optical frequency. Nanoscale Res Lett 16(1):1–9

    Article  Google Scholar 

  4. Qin F, Chen X, Yi Z et al (2020) Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Sol Energy Mater Sol Cells 211:110535

    Article  CAS  Google Scholar 

  5. Wang Y, Xuan XF, Zhu L et al (2021) Numerical study of an ultra-broadband, wide-angle, polarization-insensitive absorber in visible and infrared region. Opt Mater 114:110902

    Article  CAS  Google Scholar 

  6. Wei W, Zhao Q, Shi XB (2019) Preparation of gold nanoclusters by template method and applications in biomolecule biosensing. Acta Laser Biology Sinica 28(4):296–304

    Google Scholar 

  7. Liu J, Chen W, Ma WZ et al (2020) Ultra-broadband infrared absorbers using iron thin layers. IEEE Access 8:43407–43412

    Article  Google Scholar 

  8. Liu J, Chen W, Zheng JC et al (2020) Wide-angle polarization-independent ultra-broadband absorber from visible to infrared. Nanomaterials 10(1):27

    Article  Google Scholar 

  9. Takatori K, Okamoto T, Ishibashi K (2018) Surface-plasmon-induced ultra-broadband light absorber operating in the visible to infrared rang. Opt Express 26:1342–1350

    Article  CAS  PubMed  Google Scholar 

  10. Liu ZM, Gao ED, Zhang X et al (2020) Terahertz electro-optical multi-functional modulatorand its coupling mechanisms based on upper-layer double graphene ribbons andlower-layer a graphene strip. New J Phys 22:053039

    Article  CAS  Google Scholar 

  11. Zhao F, Lin J, Lei Z et al (2022) Realization of 1.97% theoretical efficiency of 0.9 μm thick c-Si/ZnO heterojunction ultrathin-film solar cells via surface plasmon resonance enhancement. Phys Chem Chem Phys 24(8):4871–4880

    Article  CAS  PubMed  Google Scholar 

  12. Naveed MA, Bilal RMH, Baqir MA et al (2021) Ultrawideband fractal metamaterial absorber made of nickel operating in the UV to IR spectrum. Opt Express 29(26):42911–42923

    Article  CAS  Google Scholar 

  13. Zheng Z, Luo Y, Yang H et al (2022) Thermal tuning of terahertz metamaterial absorber properties based on VO 2. Phys Chem Chem Phys 24(15):8846–8853

    Article  CAS  PubMed  Google Scholar 

  14. Cheng Y, Li Z, Cheng Z (2021) Terahertz perfect absorber based on InSb metasurface for both temperature and refractive index sensing. Opt Mater 117:111129

    Article  CAS  Google Scholar 

  15. Zhang B, Li Z, Hu Z et al (2022) Analysis of a bidirectional metamaterial perfect absorber with band-switchability for multifunctional optical applications. Results Phys 34:105313

    Article  Google Scholar 

  16. Zeng X, Gao M, Zhang L et al (2018) Design of a triple-band metamaterial absorber using equivalent circuit model and interference theory. Microw Opt Technol Lett 60(7):1676–1681

    Article  Google Scholar 

  17. Chen H, Chen Z, Yang H et al (2022) Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene[J]. RSC Adv 12(13):7821–7829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng Z, Zheng Y, Luo Y et al (2022) A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection. Phys Chem Chem Phys 24(4):2527–2533

    Article  CAS  PubMed  Google Scholar 

  19. Wu X, Zheng Y, Luo Y et al (2021) A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity. Phys Chem Chem Phys 23(47):26864–26873

    Article  CAS  PubMed  Google Scholar 

  20. Zhou F, Qin F, Yi Z et al (2021) Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Phys Chem Chem Phys 23(31):17041–17048

    Article  CAS  PubMed  Google Scholar 

  21. Yang S, Yuan S, Wang JY (2021) A light-excited switchable terahertz dual-band metamaterial absorber. Acta Optica Sinica 41(2):0216001

    Article  Google Scholar 

  22. Li C, Xiao Z, Ling X et al (2019) Broadband visible metamaterial absorber based on a three-dimensional structure. Waves Random Complex Media 29(3):403–412

    Article  Google Scholar 

  23. Nejat M, Nozhat N (2019) Design, theory, and circuit model of wideband, tunable and polarization-insensitive terahertz absorber based on graphene. IEEE Trans Nanotechnol 18:684–690

    Article  CAS  Google Scholar 

  24. Nguyen TQH, Phan HL, Tung PD et al (2019) Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region. IEEE Photonics J 11(1):1–8

    Article  CAS  Google Scholar 

  25. Zheng Z, Zheng Y, Luo Y et al (2021) Terahertz perfect absorber based on flexible active switching of ultra-broadband and ultra-narrowband. Opt Express 29(26):42787–42799

    Article  CAS  Google Scholar 

  26. Cong J, Zhou Z, Yun B et al (2016) Broadband visible-light absorber via hybridization of propagating surface plasmon. Opt Lett 41(9):1965–1968

    Article  CAS  PubMed  Google Scholar 

  27. Cheng Y, Du C (2019) Broadband plasmonic absorber based on all silicon nanostructure resonators in visible region. Opt Mater 98:109441

    Article  CAS  Google Scholar 

  28. Shuvo MMK, Hossain MI, Mahmud S et al (2022) Polarization and angular insensitive bendable metamaterial absorber for UV to NIR range. Sci Rep 12(1):1–15

    Article  Google Scholar 

  29. Wang Y, Chen K, Lin YS et al (2022) Plasmonic metasurface with quadrilateral truncated cones for visible perfect absorber. Physica E 139:115140

    Article  Google Scholar 

  30. Zheng Y, Wu P, Yang H et al (2022) High efficiency titanium oxides and nitrides ultra-broadband solar energy absorber and thermal emitter from 200 nm to 2600 nm. Opt Laser Technol 150:108002

    Article  CAS  Google Scholar 

  31. Ding F, Dai J, Chen YT et al (2016) Broadband near-infrared metamaterial absorbers utilizing highly lossymetals. Sci Rep 6:39445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith DR, Dalichaouch R, Kroll N et al (1993) Photonic band structure and defects in one and two dimensions. J Opt Soc Am B 10(2):314–321

    Article  CAS  Google Scholar 

  33. Palik ED (1985) Handbook of optical constants of solids. Academic

  34. Li ZB, Yang YH, Kong XT et al (2009) Fabry-Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit. J Opt A Pure Appl Opt 11(10):105002

    Article  Google Scholar 

  35. Hou W, Yang F, Chen Z et al (2022) Wide-angle and broadband solar absorber made using highly efficient large-area fabrication strategy. Opt Express 30(3):4424–4433

    Article  CAS  PubMed  Google Scholar 

  36. Li J, Chen X, Yi Z et al (2020) Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays. Mater Today Energy 16:100390

    Article  Google Scholar 

Download references

Funding

This research was funded by the National Nature Science Foundation of China (61967007 and 61963016), the Key Research and Development Program of Jiangxi Province, China (20201BBF61012), the Key Research and Development Program of Anhui Province, China (202004a05020023), the Science and Technology Major Special Project of Anhui Province, China (202003a05020031), the University Natural Science Foundation of Anhui Province (2022AH051578), and the Science and Technology Plan Project of Huainan, China (2021A2411).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have participated in conceiving the idea, designing and simulating the structure, obtaining the results, and revising process. All the authors gave the final approval of the version to be submitted.

Corresponding authors

Correspondence to Yang Wang or Lu Zhu.

Ethics declarations

Ethics Approval

All authors accepted.

Consent to Participate

All authors accepted.

Consent for Publication

All authors accepted.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, SB., Zhu, L. et al. Numerical Analysis of Ultra-broadband Metamaterial Absorber with High Absorption in the Visible and Infrared Regions. Plasmonics 18, 811–820 (2023). https://doi.org/10.1007/s11468-023-01806-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01806-z

Keywords

Navigation