Skip to main content
Log in

Miniaturized Multi-Spectral Perfect Metamaterial Absorber for THz Sensing, Imaging and Spectroscopic Applications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

An ultra-thin terahertz (THz) perfect metamaterial (MM) absorber with multi-spectral characteristics is reported in this paper. The MM absorber has a compact geometry and is developed on a polyimide substrate supported by a silicon wafer. The conductive regions of the perfect MM absorber are created using copper. The MM absorber has a square lattice and the unit cell is patterned using concentric L-stubs connected to a central stub along one end of the L-sections. These structures are rotated and distributed along the four sides to obtain a polarization-independent absorber unit cell. The proposed absorber has six distinct frequency bands between 0.45 and 2.2 THz. The absorptivity in each of the frequency bands is greater than 90% with a peak absorption of 99% at 1 THz and 1.56 THz. The absorber is tested for angular independence and the performance is found stable up to 60°. Furthermore, the absorber as a material sensor is evaluated and the results are presented. The sensitivity of the sensor is estimated to be greater than 10.56 GHz/PU with a deviation of less than 3.12 GHz/μm. Thus, from the investigations presented, it is inferred that the proposed MM absorber meets the need for THz sensing, imaging and spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Material

No new data was generated.

Code Availability

Not applicable.

References

  1. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Phys Rev Lett 100:207402

    Article  CAS  PubMed  Google Scholar 

  2. Dincer F, Karaaslan M, Sabah C (2015) Design and analysis of perfect metamaterial absorber in GHz and THz frequencies. J Electromagn Waves Appl 29(18):2492–2500

    Article  Google Scholar 

  3. Zhang H-F, Liu J-X, Yang J, Zhang H, Li H-M (2018) A polarization-insensitive broadband terahertz absorber with a multilayer structure. Results Phys 11:1064–1074

    Article  Google Scholar 

  4. He Y, Wu Q, Yan S (2019) Multi-band terahertz absorber at 0.1–1 THz frequency based on ultra-thin metamaterial. Plasmonics 14:1303–1310

    Article  CAS  Google Scholar 

  5. Kong X-R, Dao R-N, Zhang H-F (2019) A tunable double-decker ultra-broadband THz absorber based on a phase change material. Plasmonics 14:1233–1241

    Article  CAS  Google Scholar 

  6. Kong X, Zhang H, Dao R (2019) A tunable ultra-broadband THz absorber based on a phase change material. J Electron Mater 14:233–1241

    Google Scholar 

  7. Wang B-X, He Y, Lou P, Xing W (2020) Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Adv 2:763–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu H, Luo K, Tang S, Peng D, Hu F, Tu L (2018) An ultra-wideband THz/IR metamaterial absorber based on doped silicon. Materials 11(12):2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu Z-C, Gao R-M, Ding C-F, Zhang Y-T, Yao J-Q (2014) Multiband metamaterial absorber at terahertz frequencies. Chin Phys Lett 31(5):054205

    Article  Google Scholar 

  10. Aghaee T, Orouji AA (2020) Highly tunable multi-band THz absorber with circuit model representation using multi-bias scheme. Int J Numer Model Electron Networks Devices Fields 33:e2777

    Article  Google Scholar 

  11. Hu D, Wang H, Tang Z, Zhang X, Ju L, Wang H (2016) Design of a multiband terahertz perfect absorber. Chin Phys B 25(3):037801

    Article  Google Scholar 

  12. Xu Z, Wu D, Liu Y, Liu C, Yu Z, Yu L, Ye H (2018) Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons. Nanoscale Res Lett 13(1):143

    Article  PubMed  PubMed Central  Google Scholar 

  13. Janneh M, De Marcellis A, Palange E et al (2018) Design of a metasurface-based dual-band terahertz perfect absorber with very high Q-factors for sensing applications. Opt Commun 416:152–159

    Article  CAS  Google Scholar 

  14. Wang G-Z, Wang B-X (2015) Five-band terahertz metamaterial absorber based on a four-gap comb resonator. J Lightwave Technol 33(24):5151–5156

    Article  Google Scholar 

  15. Sabah C, Mulla B, Altan H, Ozyuzer L (2018) Cross-like terahertz metamaterial absorber for sensing applications. Pramana 91(2):17

    Article  Google Scholar 

  16. Abdulkarim YI, Özkan F, Alkurt HN, Awl FF, Sharif M, Bakır M, Dalgac S, Karaaslan M, Luo H (2021) An ultrathin and dual-band metamaterial perfect absorber based on ZnSe for the polarization-independent in the terahertz range. Results Phys 26:104344

    Article  Google Scholar 

  17. Wang B-X, Wei Xu, Yangkuan Wu, Yang Z, Lai S, Liming Lu (2022) Realization of a multi-band terahertz metamaterial absorber using two identical split rings having opposite opening directions connected by a rectangular patch. Nanoscale Adv 4:1359–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiong Z, Liping Shang Hu, Deng LX, Chen L, Guo J, Li G (2022) High-sensitivity multiband detection based on the local enhancement effect of an electric field at terahertz frequency. J Sens 2022:1533866

    Article  Google Scholar 

  19. Chen X, Wei Su, Geng Z, Meng Z, Hong Wu (2022) A multi-band terahertz plasmonic absorber based on fan-like metasurface. Optik 267:169701

    Article  Google Scholar 

  20. Ma L, Liu Y, Zhu Y, Gu W (2022) Sensing performance of triple-band terahertz metamaterial absorber based on snowflake-shaped resonators. Photonics 9:777

    Article  CAS  Google Scholar 

  21. Vafapour Z (2022) Cost-effective bull’s eye aperture-style multi-band metamaterial absorber at sub-THz band: design, numerical analysis, and physical interpretation. Sensors 22(8):2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ben-Xin W, Gui-Zhen W, Tian S (2016) Simple design of novel triple-band terahertz metamaterial absorber for sensing application. J Phys D: Appl Phys 49:165307

    Article  Google Scholar 

  23. Zhang Y, Peng L, Yu-Sheng L (2021) Tunable split-disk metamaterial absorber for sensing application. Nanomaterials 11(3):598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yulian L, Bowen A, Shengming J, Jun G, Yuanlin C, Shengda P (2015) Plasmonic induced triple-band absorber for sensor application. Opt Express 23:17607–17612

    Article  Google Scholar 

  25. Hamouleh-Alipour A, Forouzeshfard M, Baghbani R, Vafapour Z (2022) Blood hemoglobin concentration sensing by optical nano biosensor-based plasmonic metasurface: a feasibility study. IEEE Trans Nanotechnol 21:620–628

    Article  CAS  Google Scholar 

  26. Tongling W, Huiyun Z, Yuping Z, Maoyong C (2020) A bi-tunable switchable polarization-independent dual-band metamaterial terahertz absorber using VO2 and Dirac semimetal. Results Phys 19:103484

    Article  Google Scholar 

  27. Barzegar-Parizi S, Vafapour Z (2022) Dynamically switchable sub-THz absorber using VO2 metamaterial suitable in optoelectronic applications. IEEE Trans Plasma Sci 50(12):5038–5045

    Article  CAS  Google Scholar 

  28. Bakır M, Karaaslan M, Unal E, Akgol O, Sabah C (2017) Microwave metamaterial absorber for sensing applications. Opto-Electron Rev 25(4):318–325

    Article  Google Scholar 

  29. Bagmanci M, Karaaslan M, Unal E, Akgol O, Bakır M, Sabah C (2019) Solar energy harvesting with ultra-broadband metamaterial absorber. Int J Mod Phys B 1950056

  30. Ma Anchen et al (2020) Ultrasensitive THz sensor based on centrosymmetric F-shaped metamaterial resonators. Front Phys 441

  31. Vafapour Z, Dutta M, Stroscio MA (2021) Sensing, switching and modulating applications of a superconducting THz metamaterial. IEEE Sens J 21(13):15187–15195

    Article  CAS  Google Scholar 

  32. Xiao H, Jian W (2015) High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene. Opt Lett 40:5538–5541

    Article  Google Scholar 

  33. Yu Y, Zhefu L, Zhengqi L, Xiaoshan L, Jin Z, Guiqiang L, Zao Y, Junqiao W (2021) Recent progresses on metamaterials for optical absorption and sensing: a review. J Phys D Appl Phys 54(11):113002

    Article  Google Scholar 

  34. Bagmanci M, Karaaslan M, Unal E, Akgol O, Bakır M, Sabah C (2019) Solar energy harvesting with ultra-broadband metamaterial absorber. Int J Mod Phys B 1950056

Download references

Author information

Authors and Affiliations

Authors

Contributions

Swathika R—conceptualization and simulation. Radha N—materials and methods, paperwork. Vishvaksenan K S—idea and conceptualization, simulation and paperwork.

Corresponding author

Correspondence to Swathika Rengasamy.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rengasamy, S., Natarajan, R. & Kuttathati Srinivasan, V. Miniaturized Multi-Spectral Perfect Metamaterial Absorber for THz Sensing, Imaging and Spectroscopic Applications. Plasmonics 18, 643–651 (2023). https://doi.org/10.1007/s11468-023-01793-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01793-1

Keywords

Navigation