Skip to main content
Log in

Black Phosphorous-Based Nanostructures for Refractive Index Sensing with High Figure of Merit in the Mid-infrared

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Two-dimensional materials have emerged as new type of smart materials that may impact advanced photonic devices. Here, to increase the light absorption, a black phosphorus-based nanostructure is proposed. The presented nanostructure has a grating-shaped structure based on monolayer/multilayer black phosphorus and silica. To access reasonable absorption, the structure is numerically simulated by the finite difference time domain (FDTD) method. To benchmark this nanostructure, the black phosphorus permittivity in the wavelength range of 5 to 15 μm was calculated, to achieve the transfer spectrum based on the lateral length changes of black phosphorus (i.e., L = 100, 150, 170 nm) and the silica substrate which is extracted from Palick experimental results; the proposed nanostructure is simulated using the FDTD method. Also, changes in the refractive index of the surroundings have been used to compute significant parameters in the nanosensors, such as sensitivity, FWHM, and FOM. The proposed nanostructure can be used in tunable absorbers in the range of infrared wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data and codes are available from all authors of this work.

Code Availability

All data and codes are available from all authors of this work.

References

  1. Rosei F, Vayssieres L, Mensah P (2008) Materials science in the developing world: challenges and perspectives for Africa. Adv Mater 20(24):4627–4640

    CAS  Google Scholar 

  2. Smalley RE (2005) Future global energy prosperity: the terawatt challenge. MRS Bull 30(6):412–417

    Google Scholar 

  3. Novoselov KS et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    CAS  PubMed  Google Scholar 

  4. Geim AK, Novoselov KS (2010) The rise of graphene. Nanoscience and technology: a collection of reviews from nature journals. 11–19

  5. Lin Y, Williams TV, Connell JW (2010) Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett 1(1):277–283

    Google Scholar 

  6. Naguib M et al (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26(7):992–1005

    CAS  PubMed  Google Scholar 

  7. Yang Z, Zhang Y, Schnepp Z (2015) Soft and hard templating of graphitic carbon nitride. J Mater Chem A 3(27):14081–14092

    CAS  Google Scholar 

  8. Osada M, Sasaki T (2009) Exfoliated oxide nanosheets: new solution to nanoelectronics. J Mater Chem 19(17):2503–2511

    CAS  Google Scholar 

  9. Wang Q, O’Hare D (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112(7):4124–4155

    CAS  PubMed  Google Scholar 

  10. Balendhran S et al (2015) Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11(6):640–652

    CAS  PubMed  Google Scholar 

  11. Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9(10):9451–9469

    CAS  PubMed  Google Scholar 

  12. Chhowalla M, Liu Z, Zhang H (2015) Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem Soc Rev 44(9):2584–2586

    CAS  PubMed  Google Scholar 

  13. Tan C, Zhang H (2015) Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev 44(9):2713–2731

    CAS  PubMed  Google Scholar 

  14. Chen Y et al (2015) Two-dimensional graphene analogues for biomedical applications. Chem Soc Rev 44(9):2681–2701

    CAS  PubMed  Google Scholar 

  15. Chhowalla M et al (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5(4):263–275

    PubMed  Google Scholar 

  16. Niu L et al (2016) Production of two-dimensional nanomaterials via liquid-based direct exfoliation. Small 12(3):272–293

    CAS  PubMed  Google Scholar 

  17. Wang Y et al (2014) Liquid-phase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity. Nanoscale 6(21):12340–12344

    CAS  PubMed  Google Scholar 

  18. Pumera M, Sofer Z, Ambrosi A (2014) Layered transition metal dichalcogenides for electrochemical energy generation and storage. J Mater Chem A 2(24):8981–8987

    CAS  Google Scholar 

  19. Yang J, Shin HS (2014) Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction. J Mater Chem A 2(17):5979–5985

    CAS  Google Scholar 

  20. Yan Z-Q, Zhang W (2014) The development of graphene-based devices for cell biology research. Front Mater Sci 8:107–122

    Google Scholar 

  21. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    CAS  Google Scholar 

  22. Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M, Roelofs A (2014) Tunable transport gap in phosphorene. Nano Lett 14:5733–5739

    CAS  PubMed  Google Scholar 

  23. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    CAS  PubMed  Google Scholar 

  24. Chen H et al (2020) Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies. Futur Gener Comput Syst 111:175–198

    Google Scholar 

  25. Wang M, Chen HJASC (2020) Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl Soft Comput 88:105946

  26. Xu Y et al (2019) Enhanced moth-flame optimizer with mutation strategy for global optimization. Inf Sci 492:181–203

    Google Scholar 

  27. Zhao X et al (2019) Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Comput Biol Chem 78:481–490

    CAS  PubMed  Google Scholar 

  28. Li C et al (2018) Developing a new intelligent system for the diagnosis of tuberculous pleural effusion. Comput Methods Programs Biomed 153:211–225

    PubMed  Google Scholar 

  29. Wang M et al (2017) Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267:69–84

    Google Scholar 

  30. Xia J et al (2017) Ultrasound-based differentiation of malignant and benign thyroid nodules: an extreme learning machine approach. Comput Methods Programs Biomed 147:37–49

    PubMed  Google Scholar 

  31. Shen L et al (2016) Evolving support vector machines using fruit fly optimization for medical data classification. Knowl-Based Syst 96:61–75

    Google Scholar 

  32. Chen H-L et al (2016) An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson’s disease. Neurocomputing 184:131–144

    Google Scholar 

  33. Hu L et al (2015) An efficient machine learning approach for diagnosis of paraquat-poisoned patients. Comput Biol Med 59:116–124

    PubMed  Google Scholar 

  34. Xu X, Chen H-lJSC (2014) Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Comput 18(4):797–807

    Google Scholar 

  35. Zhang Y et al (2020) Boosted binary Harris hawks optimizer and feature selection. Eng Comput 25:26

    Google Scholar 

  36. Zhang Y (2020) Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis. Neurocomputing

  37. Zhao D et al (2020) Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowl-Based Syst 106510

  38. Tu J et al (2021) Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance. Knowl-Based Syst 212:106642

  39. Shan W et al (2020) Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis. Knowl-Based Syst 106728

  40. Yu C et al (2021) SGOA: annealing-behaved grasshopper optimizer for global tasks. Eng Comput 1–28

  41. Hu J et al (2020) Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection. Knowl-Based Syst 106684

  42. Zhao X et al (2014) Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl Soft Comput 24:585–596

    CAS  Google Scholar 

  43. Yu H et al (2020) Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis. Eng Comput 1–29

  44. Boddula R, Asiri AM (eds) (2019) Black Phosphorus: Synthesis, Properties and Applications. Springer Nature

  45. Xu R, Yang J, Myint YW, Pei J, Yan H, Wang F, Lu Y (2016) Exciton brightening in monolayer phosphorene via dimensionality modification. Adv Mater 28:3493–3498

    CAS  PubMed  Google Scholar 

  46. Brown A, Rundqvist S (1965) Refinement of the crystal structure of black phosphorus. Acta Crystallogr 19:684–685

    CAS  Google Scholar 

  47. Fang C, Liu Y, Han G, Shao Y, Huang Y, Zhang J, Hao Y (2017) Absorption enhancement for black phosphorus active layer based on plasmonic nanocavity. IEEE Photonics J 10(1):1–10

    Google Scholar 

  48. Pal S et al (2018) Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor. Appl Phys A 124(5):394. https://doi.org/10.1007/s00339-018-1804-1

    Article  CAS  Google Scholar 

  49. Kumar A, Gupta N, Tripathi MM, Chaujar R (2019) Analysis of structural parameters on sensitivity of black phosphorus junctionless recessed channel MOSFET for biosensing application. Microsyst Technol 1–7. https://doi.org/10.1007/s00542-019-04545-6

  50. Zhou L, Liu C, Sun Z, Mao H, Zhang L, Yu X, Chen X (2019) Black phosphorus-based fiber optic biosensor for ultrasensitive cancer diagnosis. Biosens Bioelectron 137:140–147. https://doi.org/10.1016/j.bios.2019.04.044

    Article  CAS  PubMed  Google Scholar 

  51. Wang J, Jiang Y (2017) Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials. Opt Express 25(5):5206–5216

    PubMed  Google Scholar 

  52. Zhou R, Peng J, Yang S, Liu D, Xiao Y, Cao G (2018) Lifetime and nonlinearity of modulated surface plasmon for black phosphorus sensing application. Nanoscale 10(39):18878–18891

    CAS  PubMed  Google Scholar 

  53. Zhu Y, Tang B, Jiang C (2019) Tunable ultra-broadband anisotropic absorbers based on multi-layer black phosphorus ribbons. Appl Phys Express 12(3):032009

    Google Scholar 

  54. Keshavarz A, Vafapour Z (2019) Sensing avian influenza viruses using terahertz metamaterial reflector. IEEE Sens J 19(13):5161–5166

    CAS  Google Scholar 

  55. Azizi B, Shabankareh MA, Farmani A (2021) Simulation of a refractive index sensor based on the Vernier effect and a cascaded PANDA and Mach–Zehnder interferometer. J Comput Electron 1–12

  56. Parsa Y, Farmani H, Farmani A (2021) Steering of guided light with graphene metasurface for refractive index sensing with high figure of merits. Plasmonics 1–10

  57. Elham K, Mashayekhi HR, Farmani A (2021) Highly polarization-sensitive, broadband, low dark current, high responsivity graphene-based photodetector utilizing a metal nano-grating at telecommunication wavelengths. JOSA B 38.4:1192–1199

  58. Amoosoltani N et al (2021) Double-ring resonator plasmonic refractive index sensor utilizing dual-band unidirectional reflectionless propagation effect. Plasmonics 1–9

  59. Farhadi S, Farmani A, Hamidi A (2021) Figure of merit enhancement of surface plasmon resonance biosensor based on Talbot effect. Opt Quant Electron 53(9):1–13

    Google Scholar 

  60. Moradiani F et al (2020) Systematic engineering of a nanostructure plasmonic sensing platform for ultrasensitive biomaterial detection. Opt Commun 474:126178

  61. Farmani H, Farmani A (2020) Graphene sensing nanostructure for exact graphene layers identification at terahertz frequency. Physica E 124:114375

    CAS  Google Scholar 

  62. Farmani A, Miri M, Sheikhi MH (2017) Tunable resonant Goos-Hänchen and Imbert-Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces. JOSA B 34(6):1097–1106

    CAS  Google Scholar 

  63. Chen X, Wang D, Wang T, Yang Z, Zou X, Wang P, Wei Z (2019) Enhanced photoresponsivity of a GaAs nanowire metal-semiconductor-metal photodetector by adjusting the Fermi level. ACS Appl Mater Interfaces 11(36):33188–33193. https://doi.org/10.1021/acsami.9b07891

    Article  CAS  PubMed  Google Scholar 

  64. Yang Y, Liu J, Zhou X (2021) A CRISPR-based and post-amplification coupled SARS-CoV-2 detection with a portable evanescent wave biosensor. Biosens Bioelectron 190:113418. https://doi.org/10.1016/j.bios.2021.113418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu Y, Zhao Y, Qiao Y, Feng Y, Li W, Fei W (2021) Defect engineering of rutile TiO2 ceramics: route to high voltage stability of colossal permittivity. J Mater Sci Technol 84:10–15. https://doi.org/10.1016/j.jmst.2020.12.046

    Article  Google Scholar 

  66. Xu X, Nieto-Vesperinas M (2019) Azimuthal imaginary poynting momentum density. Phys Rev Lett 123(23):233902. https://doi.org/10.1103/PhysRevLett.123.233902

    Article  CAS  PubMed  Google Scholar 

  67. Fan Z, Ji P, Zhang J, Segets D, Chen D, Chen S (2021) Wavelet neural network modeling for the retention efficiency of sub-15 nm nanoparticles in ultrafiltration under small particle to pore diameter ratio. J Membr Sci 635:119503. https://doi.org/10.1016/j.memsci.2021.119503

    Article  CAS  Google Scholar 

  68. Li X, Feng Y, Liu B, Yi D, Yang X, Zhang W, Bai P (2019) Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. J Alloy Compd 788:485–494. https://doi.org/10.1016/j.jallcom.2019.02.223

    Article  CAS  Google Scholar 

  69. Li Y, Macdonald DD, Yang J, Qiu J, Wang S (2020) Point defect model for the corrosion of steels in supercritical water: Part I, film growth kinetics. Corros Sci 163:108280. https://doi.org/10.1016/j.corsci.2019.108280

    Article  CAS  Google Scholar 

  70. Yan J, Meng Y, Yang X, Luo X, Guan X (2021) Privacy-preserving localization for underwater sensor networks via deep reinforcement learning. IEEE Trans Inf Forensics Secur 16:1880–1895. https://doi.org/10.1109/TIFS.2020.3045320

    Article  Google Scholar 

  71. Zhang X, Tang Y, Zhang F, Lee C (2016) A novel aluminum-graphite dual-ion battery. Adv Energy Mater 6(11):1502588. https://doi.org/10.1002/aenm.201502588

    Article  CAS  Google Scholar 

  72. Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng H (2018) Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat Chem 10(6):667–672. https://doi.org/10.1038/s41557-018-0045-4

    Article  CAS  PubMed  Google Scholar 

  73. Li X, Sheng X, Guo Y, Lu X, Wu H, Chen Y, Gu J (2021) Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J Mater Sci Technol 86:171–179. https://doi.org/10.1016/j.jmst.2021.02.009

    Article  Google Scholar 

  74. Cheng H, Li T, Li X, Feng J, Tang T, Qin D (2021) Facile synthesis of Co9S8 nanocages as an electrochemical sensor for luteolin detection. J Electrochem Soc. https://doi.org/10.1149/1945-7111/ac1813

    Article  Google Scholar 

  75. Farmani A (2019) Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. JOSA B 36(2):401–407

    CAS  Google Scholar 

  76. Farmani A, Mir A (2019) Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photonics Technol Lett 31(8):643–646

    CAS  Google Scholar 

  77. Farmani H, Farmani A, Biglari Z (2020) A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Physica E 116:113730

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and contributed to the final manuscript. Elahe Hosseini and Ali Farmani carried out the numerical results. Ali Mir wrote the revised manuscript with support from all authors.

Corresponding author

Correspondence to Ali Farmani.

Ethics declarations

Ethics Approval

Not applicable, because this article does not contain any studies with human or animal subjects.

Consent to Participate

Not applicable, because this article does not contain any studies with human or animal subjects.

Consent for Publication

I, the undersigned, give our consent for the publication of identifiable details, which can include details within the text (“Material”) to be published in the Journal of Plasmonics.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, E., Mir, A. & Farmani, A. Black Phosphorous-Based Nanostructures for Refractive Index Sensing with High Figure of Merit in the Mid-infrared. Plasmonics 17, 639–646 (2022). https://doi.org/10.1007/s11468-021-01550-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01550-2

Keywords

Navigation