Skip to main content
Log in

Investigating the Effect of Ag and Au Nanostructures with Spherical and Rod Shapes on the Emission Wavelength of OLED

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Noble metals, especially Ag and Au nanostructures, have unique and adjustable optical attributes in terms of surface plasmon resonance. In this research, the effect of Ag and Au nanoparticles with spherical and rod shapes on the light extraction efficiency and the FWHM of OLED structures was investigated using the finite difference time domain (FDTD) method. The simulation results displayed that by changing the shape and size of Ag and Au nanostructures, the emission wavelength can be adjusted, and the FWHM can be reduced. The presence of Ag and Au nanoparticles in the OLEDs showed a blue and red shift of the emission wavelength, respectively. Also, the Ag and Au nanorods caused a significant reduction in the FWHM and a shift to the longer wavelengths in the structures. The structures containing Ag nanorods showed the narrowest FWHM and longer emission wavelength than the other structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

The code of this study is available from the corresponding author upon reasonable request.

References

  1. Park M, Nguyen TP, Choi KS, Park J, Ozturk A, Kim SY (2017) MoS2 –nanosheet /graphene-oxide composite hole injection layer in organic light-emitting diodes. J Electron Mater Lett 13:344–350

    Article  CAS  Google Scholar 

  2. Adachi C, Baldo MA, Thompson ME, Forrest SR (2019) Nearly 100% Internal phosphorescence efficiency in an organic light emitting device. J Appl Phys 90:5048

    Article  CAS  Google Scholar 

  3. Xiao L, Su S, Agata Y, Lan H, Kido J (2009) Nearly 100% internal quantum efficiency in an organic blue-light electro phosphorescent device using a weak electron transporting material with a wide energy gap. J Adv Mater 21:1271–1274

    Article  CAS  Google Scholar 

  4. Heiskanen JP, Hormi OE (2009) Absorption and photoluminescence properties of 4-substituted Alq3 derivatives and tris-(4-hydroxypyridinoanthrene) aluminium. J Tetrahedron 65:8244–8249

    Article  CAS  Google Scholar 

  5. Sun Y, Forrest SR (2008) Enhanced light out-coupling of organic light emitting devices using embedded low-index grids. J Nat Photon 2:483–487

    Article  CAS  Google Scholar 

  6. Han KH, Park YS, Cho DH, Han Y, Lee J, Yu B, Cho NS, Lee JI, Kim JJ (2018) Optical analysis of power distribution in top-emitting organic light emitting diodes integrated with nanolens array using finite difference time domain. J ACS Appl Mater Interfaces 10:18942–18947

    Article  CAS  Google Scholar 

  7. Chen P, Xiong Z, Wu X, Shao M, Meng Y, Xiong ZH, Gao C (2017) Nearly 100% efficiency enhancement of CH3NH3PbBr 3 perovskite light emitting diodes by utilizing plasmonic Au nanoparticles. J Phys Chem Lett 8:3961–3969

    Article  CAS  PubMed  Google Scholar 

  8. Kim DH, Kim JY, Kim DY, Han JH, Choi KC (2014) Solution-based nanostructure to reduce waveguide and surface plasmon losses in organic light-emitting diodes. J Organic Electronics 15:3183–3190

    Article  CAS  Google Scholar 

  9. Riedel B, Hauss J, Geyer U, Guetlein J, Lemmer U, Gerken M (2010) Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers. J Appl Phys Lett 96:243302

    Article  CAS  Google Scholar 

  10. Chen CY, Lee WK, Chen YJ, Lu CY, Lin HY, Wu CC (2015) Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting polymer. J Adv Mater 27:4883–4888

    Article  CAS  Google Scholar 

  11. Chau YFC, Lin CJ, Kao TS, Wang YC, Lim CM, Kumara NTRN, Chiang HP (2020) Enhanced photoluminescence of DCJTB with ordered Ag-SiO2 core–shell nanostructures via nanosphere lithography. J Results Phys 17:103168

    Article  Google Scholar 

  12. Jeong SH, Choi H, Kim JY, Lee TW (2015) Silver-based nanoparticles for surface plasmon resonance in organic optoelectronics. J Part Part Syst Char 32:164–175

    Article  CAS  Google Scholar 

  13. Chau YF, Yeh HH, Liao CC, Ho HF, Liu CY, Tsai DP (2010) Controlling surface plasmon of several pair arrays of silver-shell nanocylinders. J Applied optics 49:1163–1169

    Article  CAS  Google Scholar 

  14. Chau YF, Yeh HH (2011) A comparative study of solid-silver and silver-shell nanodimers on surface plasmon resonances. J Nanopart Res 13:637–644

    Article  CAS  Google Scholar 

  15. Khadir S, Chakaroun M, Belkhir A, Fischer A, Lamrous O, Boudrioua A (2015) Localized surface plasmon enhanced emission of organic light emitting diode coupled to DBR-cathode microcavity by using silver nanoclusters. J Opt Express 23:23647–23659

    Article  Google Scholar 

  16. Garcia RF, Sonnefraud Y, Dominguez AI, Giannini V, Maier SA (2014) Design considerations for near-field enhancement in optical antennas. J Contemp Phys 55:1–11

    Article  CAS  Google Scholar 

  17. Chau YFC, Syu JY, Chao CTC, Chiang HP, Lim CM (2017) Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications. J Phys D: Appl Phys 50:045105

    Article  CAS  Google Scholar 

  18. Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou S (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. J MRS Bull 30:368–375

    Article  CAS  Google Scholar 

  19. Ho YZ, Chen WT, Huang YW, Wu PC, Tseng ML, Wang YT, Chau YF, Tsai DP (2012) Tunable plasmonic resonance arising from broken-symmetric silver nanobeads with dielectric cores. J Opt 14:114010

    Article  CAS  Google Scholar 

  20. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. J Chem Soc Rev 35:209–217

    Article  CAS  Google Scholar 

  21. Li N, Zhao P, Astruc D (2014) Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. J Angew Chem Int Ed Engl 53:1756–1789

    Article  CAS  Google Scholar 

  22. Navarro JRG, Lerouge F (2017) From gold nanoparticles to luminescent nano-objects: experimental aspects for better gold-chromophore interactions. J Nanophotonics 6:71–92

    Article  CAS  Google Scholar 

  23. Njoki PN, Lim IIS, Mott D, Park HY, Khan B, Mishra S, Sujakumar R, Luo J, Zhong CJ (2007) Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C 111:14664–14669

    Article  CAS  Google Scholar 

  24. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  CAS  PubMed  Google Scholar 

  25. Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm J Am Chem Soc 131:17042–17043

    Article  CAS  PubMed  Google Scholar 

  26. Chau YF, Lin YJ, Tsai DP (2010) Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars. J Opt Express 18:3510–3518

    Article  CAS  Google Scholar 

  27. Chau YF, Yeh HH, Tsai DP (2009) Surface plasmon effects excitation from three-pair arrays of silver-shell nanocylinders. J Phys Plasmas 16:022303

    Article  CAS  Google Scholar 

  28. Chau YF, Yeh HH, Tsai DP (2010) Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs. J Electromagnet Wave 24:1005–1014

    Article  Google Scholar 

  29. Chau YFC, Chao CTC, Huang HJ, Anwar U, Lim CM, Voo NY, Mahadi AH, Kumara NTRN, Chiang HP (2019) Plasmonic perfect absorber based on metal nanorod arrays connected with veins. J Results Phys 15:102567

    Article  Google Scholar 

  30. Karmakar S, Banerjee S, Kumar D, Kamble G, Varshney RK, Chowdhury DR (2019) Deep-subwavelength coupling-induced fano resonances in symmetric terahertz metamaterials. J Phys Status Solidi RRL 13:1900310

    Article  CAS  Google Scholar 

  31. Pérez-Juste J, Liz-Marzán LM, Carnie S, Chan DYC, Mulvaney P (2004) Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. J Adv Funct Mater 14:571–579

    Article  CAS  Google Scholar 

  32. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  33. Karmakar S, Kumar D, Varshney RK, Chowdhury DR (2020) Lattice-induced plasmon hybridization in metamaterials. J Optics Letters 45:3386–3389

    Article  Google Scholar 

  34. Yuan H, Khoury CG, Hwang H, Wilson CM, Grant GA, Vo-Dinh T (2012) Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. J Nanotechnology 23:075102

    Article  CAS  Google Scholar 

  35. Rodriguez-Lorenzo L, Alvarez-Puebla RA, Javier García de Abajo F, Liz-Marzán LM (2010) Surface enhanced Raman scattering using star-shaped gold colloidal nanoparticles. J Phys Chem C 114:7336-7340

  36. Blanchard NP, Marotte S, Leverrier Y, Marvel J, Chaput F, Micouin G, Gabudean AM (2012) Synthesis of PEGylated gold nanostars and bipyramids for intracellular uptake. J Nanotechnology 23:465602

    Article  CAS  Google Scholar 

  37. Chau YFC, Lim CM, Lee C, Huang HJ, Lin CT, Kumara NTRN, Yoong VN, Chiang HP (2016) Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod. J Appl Phys 120:093110

    Article  CAS  Google Scholar 

  38. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  CAS  PubMed  Google Scholar 

  39. Rafiaei SM, Karimzadeh E, Khodaei M, Ashrafi F (2019) Improved optical properties of Dy3+ doped phosphors by spherical SiO2 particles. J Ceram Int 45:21051–22444

    Article  CAS  Google Scholar 

  40. Karimzadeh E, Enayati MH, Malekmohammad M, Fallah H, Alhaji A (2019) The effect of second phase particles on light transmission of ZnS/diamond nanocomposite. J Mater Res Express 6:055031

    Article  CAS  Google Scholar 

  41. Mann V, Rastogi V (2017) Dielectric nanoparticles for the enhancement of OLED light extraction efficiency. J Opt Commun 387:202–207

    Article  CAS  Google Scholar 

  42. Ding BF, Hou XY, Alameh K (2012) High contrast tandem organic light emitting devices. J Appl Phys Lett 101:133305

    Article  CAS  Google Scholar 

  43. Lajaunie L, Boucher F, Dessapt R, Moreau P (2013) Strong anisotropic influence of local-field effects on the dielectric response of α-MoO3. J Phys Rev B 88:115141

    Article  CAS  Google Scholar 

  44. Kim H, Gilmore CM (1999) Electrical, optical and structural properties of indium-tin oxide thin films for organic light-emitting devices. J Appl Phys 86:6451–6461

    Article  CAS  Google Scholar 

  45. Pan J, Chen J, Zhao D, Huang Q, Khan Q, Liu X, Tao Z, Zhang Z, Lei W (2016) Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles. J Opt Express 24:A33–A43

    Article  CAS  Google Scholar 

  46. Tang X, Wu GF, Lai KWC (2017) Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared. J Mater Chem C 5:362-369

  47. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118

    Article  CAS  Google Scholar 

  48. Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation and exciton-coupling model. J Phys Chem B 110:18243–18253

    Article  CAS  PubMed  Google Scholar 

  49. Demchuk A, Bolesta I, Kushnir O, Kolych I (2017) The computational studies of plasmon interaction. Nanoscale Res Lett 12:273

    Article  PubMed  PubMed Central  Google Scholar 

  50. Feng J, Sun D, Mei S, Shi W, Mei F, Zhou Y, Xu J, Jiang Y, Wu L (2018) Plasmonic-enhanced organic light-emitting diodes based on a graphene oxide/au nanoparticles composite hole injection layer. J Frontiers in Materials 5:75

    Article  Google Scholar 

  51. Luo M, Huang H, Choi SI, Zhang C, Silva RR, Peng HC, Li ZY, Liu J, He Z, Xia Y (2015) Facile synthesis of Ag nanorods with no plasmon resonance peak in the visible region by using Pd decahedra of 16 nm in size as seeds. J ACS nano 9:10523–10532

    Article  CAS  Google Scholar 

  52. Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

The participation of the authors is confirmed in the order presented in the manuscript.

Corresponding author

Correspondence to Seyed Mohammad Bagher Ghorashi.

Ethics declarations

Consent to Participate

All the authors give their full consent.

Consent for Publication

All the authors give their full consent for the publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, F., Ghorashi, S.M.B., Karimzadeh, E. et al. Investigating the Effect of Ag and Au Nanostructures with Spherical and Rod Shapes on the Emission Wavelength of OLED. Plasmonics 16, 1841–1848 (2021). https://doi.org/10.1007/s11468-021-01441-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01441-6

Keywords

Navigation