Skip to main content
Log in

Optical Magnetism in Surface Plasmon Resonance–Based Sensors for Enhanced Performance

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmon resonance (SPR)–based structures are finding important applications in sensing biological as well as inorganic samples. In SPR techniques, an angle-resolved reflection (R) profile of the incident light from a metal-dielectric interface is measured and the resonance characteristics are extracted for the identification of the target sample. However, the performance, and hence the applicability of these structures, suffers when the weight and concentration of the target samples are small. Here, we show that SPR-based sensors can create strong magnetism at optical frequency, which can be used for the detection of target samples instead of using the conventional R profiles, as the magnetic resonance varies depending on the refractive index of the target sample. Using scattering parameters retrieval method, we computationally find out the effective permeability (μeff) of a SPR sensor with a structure based on Kretschmann configuration, and use it to calculate the performance of the sensor. A comparison with the conventional technique that uses R profile to detect a target sample shows a significant increase in the sensor performance when μeff is used instead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Burresi M, Van Oosten D, Kampfrath T, Schoenmaker H, Heideman R, Leinse A, Kuipers L (2009) Probing the magnetic field of light at optical frequencies. Science 326(5952):550–553

    CAS  PubMed  Google Scholar 

  2. Klein MW, Enkrich C, Wegener M, Linden S (2006) Second-harmonic generation from magnetic metamaterials. Science 313(5786):502–504

    CAS  PubMed  Google Scholar 

  3. Shadrivov IV, Kozyrev AB, van der Weide D, Kivshar Y (2008) Nonlinear magnetic metamaterials. Opt Express 16(25):20266–20271

    CAS  PubMed  Google Scholar 

  4. Landau LD, Bell J, Kearsley M, Pitaevskii L, Lifshitz E, Sykes J (2013) Electrodynamics of continuous media, vol 8. Elsevier, Amsterdam

    Google Scholar 

  5. Poddubny A, Iorsh I, Belov P, Kivshar Y (2013) Hyperbolic metamaterials. Nat Photonics 7(12):948

    CAS  Google Scholar 

  6. Drachev VP, Podolskiy VA, Kildishev AV (2013) Hyperbolic metamaterials: new physics behind a classical problem. Opt Express 21(12):15048–15064

    PubMed  Google Scholar 

  7. Krishnamoorthy HN, Jacob Z, Narimanov E, Kretzschmar I, Menon VM (2012) Topological transitions in metamaterials. Science 336(6078):205–209

    CAS  PubMed  Google Scholar 

  8. Papadakis GT, Fleischman D, Davoyan A, Yeh P, Atwater HA (2018) Optical magnetism in planar metamaterial heterostructures. Nat Commun 9(1):296

    PubMed  PubMed Central  Google Scholar 

  9. Chen J, Fan W, Zhang T, Tang C, Chen X, Wu J, Li D, Yu Y (2017) Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing. Opt Express 25(4):3675–3681

    PubMed  Google Scholar 

  10. Tabasi O, Falamaki C (2018) Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors. Anal Methods 10(32):3906–3925

    CAS  Google Scholar 

  11. Vahed H, Nadri C (2019) Sensitivity enhancement of spr optical biosensor based on graphene–mos2 structure with nanocomposite layer. Opt Mater 88:161–166

    CAS  Google Scholar 

  12. Meng Q-Q, Zhao X, Lin C-Y, Chen S-J, Ding Y-C, Chen Z-Y (2017) Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film. Sensors 17(8):1846

    Google Scholar 

  13. Yu Q, Chen S, Taylor AD, Homola J, Hock B, Jiang S (2005) Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sens Actuators B Chem 107(1):193–201

    CAS  Google Scholar 

  14. Shalabney A, Abdulhalim I (2012) Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation. Opt Lett 37(7):1175–1177

    CAS  PubMed  Google Scholar 

  15. Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer mos 2. Nat Nanotechnol 8(7):497

    CAS  PubMed  Google Scholar 

  16. Kushwaha AS, Kumar A, Kumar R, Srivastava S (2018) A study of surface plasmon resonance (spr) based biosensor with improved sensitivity. PhotNano Fund Appl 31:99–106

    Google Scholar 

  17. Wu L, Guo J, Wang Q, Lu S, Dai X, Xiang Y, Fan D (2017) Sensitivity enhancement by using few-layer black phosphorus-graphene/tmdcs heterostructure in surface plasmon resonance biochemical sensor. Sens Actuators B Chem 249:542–548

    CAS  Google Scholar 

  18. Pal S, Prajapati Y, Saini J, Singh V (2016) Sensitivity enhancement of metamaterial-based surface plasmon resonance biosensor for near infrared. Optica Applicata 1:46

    Google Scholar 

  19. Maurya J, Prajapati Y, Singh V, Saini J, Tripathi R (2015) Performance of graphene–mos 2 based surface plasmon resonance sensor using silicon layer. Opt Quant Electron 47(11):3599– 3611

    CAS  Google Scholar 

  20. Meshginqalam B, Barvestani J (2018) Aluminum and phosphorene based ultrasensitive spr biosensor. Opt Mater 86:119–125

    CAS  Google Scholar 

  21. Sun P, Wang M, Liu L, Jiao L, Du W, Xia F, Liu M, Kong W, Dong L, Yun M (2019) Sensitivity enhancement of surface plasmon resonance biosensor based on graphene and barium titanate layers. Appl Surf Sci 475:342–347

    CAS  Google Scholar 

  22. Caballero B, García-Martín A, Cuevas JC (2016) Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors. ACS Photonics 3(2):203–208

    CAS  Google Scholar 

  23. Zhu Y, Zhang H, Li D, Zhang Z, Zhang S, Yi J, Wang W (2018) Magnetic plasmons in a simple metallic nanogroove array for refractive index sensing. Opt Express 26(7):9148–9154

    CAS  PubMed  Google Scholar 

  24. Papaioannou ET, Fang H, Caballero B, Akinoglu EM, Giersig M, García-Martín A, Fumagalli P (2017) Role of interactions in the magneto-plasmonic response at the geometrical threshold of surface continuity. Opt Express 25(26):32792–32799

    CAS  Google Scholar 

  25. Simovski CR, Belov PA, He S (2003) Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators. IEEE Trans Antennas Propag 51(10):2582–2591

    Google Scholar 

  26. Smith D, Vier D, Koschny T, Soukoulis C (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71(3):036617

    CAS  Google Scholar 

  27. Markoš P, Soukoulis C (2003) Transmission properties and effective electromagnetic parameters of double negative metamaterials. Opt Express 11(7):649–661

    PubMed  Google Scholar 

  28. Arslanagić S, Hansen TV, Mortensen NA, Gregersen AH, Sigmund O, Ziolkowski RW, Breinbjerg O (2013) A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization. IEEE Antennas Propag Mag 55(2):91–106

    Google Scholar 

  29. Chen X, Grzegorczyk TM, Wu B-I, Pacheco J Jr, Kong JA (2004) Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E 70(1):016608

    Google Scholar 

  30. Mayer S (2019) Magnetic permeability meter ferromaster. (accessed January 20, 2020). [Online]. Available: https://stefan-mayer.com/en/products/permeability-meters.html

  31. Zhao X, Huang T, Ping P, Wu X, Huang P, Pan J, Wu Y, Cheng Z (2018) Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors 18(7):2056

    Google Scholar 

  32. Mukhtar W, Menon PS, Shaari S, Malek M, Abdullah A (2013) Angle shifting in surface plasmon resonance: experimental and theoretical verification. In: Journal of physics: conference series, vol 431. IOP Publishing, p 012028

  33. Zeng S, Hu S, Xia J, Anderson T, Dinh X-Q, Meng X-M, Coquet P, Yong K-T (2015) Graphene–mos2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens Actuators B Chem 207:801–810

    CAS  Google Scholar 

  34. Xu H, Wu L, Dai X, Gao Y, Xiang Y (2016) An ultra-high sensitivity surface plasmon resonance sensor based on graphene-aluminum-graphene sandwich-like structure. J Appl Phys 120(5):053101

    Google Scholar 

  35. Omair Z, Talukder MA (2019) Sensitivity analysis of gold nanorod biosensors for single molecule detection. Plasmonics 14(6):1611–1619

    CAS  Google Scholar 

  36. Das A, Talukder MA (2018) Theoretical analysis of bimetallic nanorod dimer biosensors for label-free molecule detection. AIP Adv 8(2):025302

    Google Scholar 

  37. Jiang H, Choudhury S, Kudyshev ZA, Wang D, Prokopeva LJ, Xiao P, Jiang Y, Kildishev AV (2019) Enhancing sensitivity to ambient refractive index with tunable few-layer graphene/hbn nanoribbons. Photonics Res 7(7):815–822

    CAS  Google Scholar 

  38. Rodrigo D, Limaj O, Janner D, Etezadi D, De Abajo FJG, Pruneri V, Altug H (2015) Mid-infrared plasmonic biosensing with graphene. Science 349(6244):165–168

    CAS  PubMed  Google Scholar 

  39. Smith DR, Schultz S, Markoš P, Soukoulis C (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, vol 65

  40. Rockstuhl C, Lederer F, Etrich C, Pertsch T, Scharf T (2007) Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum, vol 99

  41. Petrakis L (1967) Spectral line shapes: Gaussian and lorentzian functions in magnetic resonance. J Chem Educ 44(8):432

    CAS  Google Scholar 

  42. Ho Y-L, Lee Y, Maeda E, Delaunay J-J (2013) Coupling of localized surface plasmons to u-shaped cavities for high-sensitivity and miniaturized detectors. Opt Express 21(2):1531–1540

    PubMed  Google Scholar 

  43. Chen Z, Zhao X, Lin C, Chen S, Yin L, Ding Y (2016) Figure of merit enhancement of surface plasmon resonance sensors using absentee layer. Appl Opt 55(25):6832–6835

    CAS  PubMed  Google Scholar 

  44. Maccaferri N, Gregorczyk KE, De Oliveira TV, Kataja M, Van Dijken S, Pirzadeh Z, Dmitriev A, Åkerman J, Knez M, Vavassori P (2015) Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nat Commun 6:6150

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Otte MA, Sepulveda B, Ni W, Juste JP, Liz-Marzán LM, Lechuga LM (2009) Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing. ACS Nano 4(1):349–357

    Google Scholar 

  46. Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou Z-K, Wang X et al (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381

    PubMed  Google Scholar 

  47. Ouyang Q, Zeng S, Jiang L, Hong L, Xu G, Dinh X-Q, Qian J, He S, Qu J, Coquet P et al (2016) Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci Rep 6:28190

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Verma A, Prakash A, Tripathi R (2015) Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt Commun 357:106–112

    CAS  Google Scholar 

  49. Rahman MS, Anower MS, Hasan MR, Hossain MB, Haque MI (2017) Design and numerical analysis of highly sensitive au-mos2-graphene based hybrid surface plasmon resonance biosensor. Opt Commun 396:36–43

    CAS  Google Scholar 

  50. Chen S, Lin C (2019) Figure of merit analysis of graphene based surface plasmon resonance biosensor for visible and near infrared. Opt Commun 435:102–107

    CAS  Google Scholar 

  51. Chen J, Tang C, Mao P, Peng C, Gao D, Yu Y, Wang Q, Zhang L (2016) Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials. IEEE Photonics J 8(1):1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Anisuzzaman Talukder.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.M., Talukder, M.A. Optical Magnetism in Surface Plasmon Resonance–Based Sensors for Enhanced Performance. Plasmonics 16, 581–588 (2021). https://doi.org/10.1007/s11468-020-01316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01316-2

Keywords

Navigation