Skip to main content
Log in

Comparison of Fabrication Methods Based on Nanoimprinting Lithography for Plasmonic Color Filter Fabrication

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The angle-variable tunable optical filter was strictly fabricated by two strategies of nanoimprint-coupled metal nanopatterning with improved cost-effectiveness and accessibility. The tunable optical properties and the performances of two strategies were experimentally examined and turned out to be well matched to numerical results. Tunable properties are obtained by three factors: size of fabricated Ag nanodisks, incident illumination angle, and fabrication strategies. The resonant extinction peak shifts were identified to show a large increase along with the increase in fabricated Ag disk size and increase in the incidence angle of illumination. When comparing a fabrication strategy, it was confirmed that the sample fabricated by the strip-off method has better stability on color changes with a consistent dependency on the incident angle. The presented strategies of fabrication are technically viable for obtaining well-defined plasmonic nanostructures so that it has the feasibility to apply for fascinating optical applications including display or tunable optical filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kanamori Y, Shimono M, Hane K (2006) Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates. IEEE Photon Technol Lett 18:2126–2128

    Article  CAS  Google Scholar 

  2. Cho E-H, Kim H-S, Cheong B-H et al (2009) Two-dimensional photonic crystal color filter development. Opt Express 17:8621

    Article  CAS  Google Scholar 

  3. Kinoshita S, Yoshioka S, Miyazaki J (2008) Physics of structural colors. Rep Prog Phys 71:076401

    Article  Google Scholar 

  4. Kim H, Ge J, Kim J et al (2009) Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat Photonics 3:534

    Article  CAS  Google Scholar 

  5. Kim W-G, Song H, Kim C et al (2016) Biomimetic self-templating optical structures fabricated by genetically engineered M13 bacteriophage. Biosens Bioelectron 85:853–859

    Article  CAS  Google Scholar 

  6. Kim W-G, Kim K, Ha S-H et al (2015) Virus based full colour pixels using a microheater. Sci Rep 5:13757

    Article  Google Scholar 

  7. Xu T, Shi H, Wu Y-K, Kaplan AF, Ok JG, Guo LJ (2011) Structural colors: from plasmonic to carbon nanostructures. Small 7:3128–3136

    Article  CAS  Google Scholar 

  8. Xu T, Wu Y-K, Luo X, Guo LJ (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 1:59

    Article  Google Scholar 

  9. Kaplan AF, Xu T, Jay Guo L (2011) High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Appl Phys Lett 99:143111

    Article  Google Scholar 

  10. Yokogawa S, Burgos SP, Atwater HA (2012) Plasmonic color filters for CMOS image sensor applications. Nano Lett 12:4349–4354

    Article  CAS  Google Scholar 

  11. Laux E, Genet C, Skauli T, Ebbesen TW (2008) Plasmonic photon sorters for spectral and polarimetric imaging. Nat Photonics 2:161

    Article  CAS  Google Scholar 

  12. Lee H-S, Yoon Y-T, Lee S-S et al (2007) Color filter based on a subwavelength patterned metal grating. Opt Express 15:15457–15463

    Article  Google Scholar 

  13. Ahn H, Song H, Shin D-M et al (2018) Emerging optical spectroscopy techniques for biomedical applications—a brief review of recent progress. Appl Spectrosc Rev 53:264–278

    Article  Google Scholar 

  14. Song H, Ahn H, Kim T et al (2019) Manipulation of light at the nanoscale for high-performance spectroscopic and optical applications. Appl Spectrosc Rev 54:482–508

    Article  Google Scholar 

  15. Ahn H, Song H, Choi J-R, Kim K (2017) A localized surface plasmon resonance sensor using double-metal-complex nanostructures and a review of recent approaches. Sensors 18:98

    Article  Google Scholar 

  16. Lochbihler H (2015) Polarizing and angle-sensitive color filter in transmittance for security feature applications. Adv Optical Technol 4:12155

    Google Scholar 

  17. Davis MS, Zhu W, Xu T et al (2017) Aperiodic nanoplasmonic devices for directional colour filtering and sensing. Nat Commun 8:1347

    Article  Google Scholar 

  18. Arslan D, Chong KE, Miroshnichenko AE et al (2017) Angle-selective all-dielectric Huygens’ metasurfaces. J Phys D Appl Phys 50:434002

    Article  Google Scholar 

  19. Duempelmann L, Casari D, Luu-Dinh A, Gallinet B, Novotny L (2015) Color rendering Plasmonic aluminum substrates with angular symmetry breaking. ACS Nano 9:12383–12391

    Article  CAS  Google Scholar 

  20. Sauvage-Vincent J, Tonchev S, Veillas C et al (2013) Optical security device for document protection using plasmon resonant transmission through a thin corrugated metallic film embedded in a plastic foil. Journal of the European Optical Society - Rapid publications 8

  21. Jeon S, Sung S-K, Jang E-H et al (2018) Multilayer metal-oxide-metal nanopatterns via nanoimprint and strip-off for multispectral resonance. Appl Surf Sci 428:280–288

    Article  CAS  Google Scholar 

  22. Xin JZ, Lee FK, Li SYW et al (2011) Transfer imprint lithography using a soft mold. Microelectron Eng 88:2632–2635

    Article  CAS  Google Scholar 

  23. Gao L, Shigeta K, Vazquez-Guardado A, Progler CJ, Bogart GR, Rogers JA, Chanda D (2014) Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands. ACS Nano 8:5535–5542

    Article  CAS  Google Scholar 

  24. Jeong JW, Yang SR, Hur YH et al (2014) High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching. Nat Commun 5:5387

    Article  CAS  Google Scholar 

  25. Jun TAO, Yong-Hua LU, Rong-Sheng Z et al (2008) Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods. No 12:4459

    Google Scholar 

  26. Si G, Zhao Y, Leong ESP et al (2014) Incident-angle dependent color tuning from a single plasmonic chip. Nanotechnology 25:455203

    Article  Google Scholar 

  27. Zheng J, Ye Z-C, Sheng Z-M (2016) Reflective low-sideband plasmonic structural colors. Opt Mater Express, OME 6:381–387

    Article  CAS  Google Scholar 

  28. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B Condens Matter 6:4370–4379

    Article  CAS  Google Scholar 

  29. Zorić I, Zäch M, Kasemo B, Langhammer C (2011) Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms. ACS Nano 5:2535–2546

    Article  Google Scholar 

  30. Ye M, Sun L, Hu X, Shi B, Zeng B, Wang L, Zhao J, Yang S, Tai R, Fecht HJ, Jiang JZ, Zhang DX (2015) Angle-insensitive plasmonic color filters with randomly distributed silver nanodisks. Opt Lett 40:4979–4982

    Article  CAS  Google Scholar 

  31. Chung T, Lee S-Y, Song EY, Chun H, Lee B (2011) Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11:10907–10929

    Article  CAS  Google Scholar 

  32. Hanarp P, Käll M, Sutherland DS (2003) Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography. J Phys Chem B 107:5768–5772

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2018R1A4A1025623, 2017M3D1A1039287). In addition, this research was funded by the Korea Institute for Advancement of Technology (KIAT) (N0002310) under the Ministry of Trade, Industry, and Energy (MOTIE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyujung Kim or Jun-Hyuk Choi.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Lee, WK., Lee, J. et al. Comparison of Fabrication Methods Based on Nanoimprinting Lithography for Plasmonic Color Filter Fabrication. Plasmonics 15, 941–948 (2020). https://doi.org/10.1007/s11468-019-01109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01109-2

Keywords

Navigation