Skip to main content
Log in

Ultrasensitive Deep-Ultraviolet Surface Plasmon Resonance Sensors Using Aluminum-Graphene Metasurface: a Theoretical Insight

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This study investigates a versatile deep-ultraviolet (DUV) surface plasmon resonance (SPR) sensor by integrating a few graphene layers into low-cost aluminum (Al) thin film. The high-quality SPR sensing performance can be obtained by tuning the thickness of the aluminum film and graphene layers which creates a phase modulation. Using deionized water (nwater = 1.333) as sample solvent, the best SPR configuration is achieved using a 13-nm Al film decorated with 4-layer graphene. This generated the sharpest differential phase (72.2839o) and darkest minimum reflectivity (1.6985 × 10−7). Meanwhile, the highest detection sensitivity is almost 6.0237 × 104 degree/RIU (RIU, refractive index unit), which is enhanced by almost 5.44 times compared with the bare 19-nm Al film–based sensors. More importantly, our proposed architectures have excellent capability of versatile sensing, which can provide an ultra-high detection sensitivity not only in air medium (nair = 1.000, 6.6667 × 104 degree/RIU) but also in an organic liquid (1,1,1,3,3-hexafluoro-2-propanol solution (HFIP), nHFIP = 1.275, 7.7380 × 104 degree/RIU). We believe that the proposed DUV-SPR sensors could work in various situations, making it a highly promising candidate for designing novel gas and biochemical sensors in deep-ultraviolet region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  Google Scholar 

  2. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  CAS  Google Scholar 

  3. Yufeng Y, Xiantong Y, Qingling O, Yonghong S, Jun S, Junle Q et al (2018) Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: theoretical insight. 2D Materials 5:025015

    Article  Google Scholar 

  4. Fodor SPA, Rava RP, Hays TR, Spiro TG (1985) Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation. J Am Chem Soc 107:1520–1529

    Article  CAS  Google Scholar 

  5. Goto T, Ikehata A, Morisawa Y, Ozaki Y (2013) Electronic transitions of protonated and deprotonated amino acids in aqueous solution in the region 145–300 nm studied by attenuated total reflection far-ultraviolet spectroscopy. J Phys Chem A 117:2517–2528

    Article  CAS  Google Scholar 

  6. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  7. Rakić AD (1995) Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl Opt 34:4755–4767

    Article  Google Scholar 

  8. Li WB, Ren KN, Zhou JH (2016) Aluminum-based localized surface plasmon resonance for biosensing. Trac-Trends Anal Chem 80:486–494

    Article  CAS  Google Scholar 

  9. Langhammer C, Schwind M, Kasemo B, Zoric I (2008) Localized surface plasmon resonances in aluminum nanodisks. Nano Lett 8:1461–1471

    Article  CAS  Google Scholar 

  10. Knight MW, King NS, Liu LF, Everitt HO, Nordlander P, Halas NJ (2014) Aluminum for plasmonics. ACS Nano 8:834–840

    Article  CAS  Google Scholar 

  11. Tanabe I, Tanaka YY, Ryoki T, Watari K, Goto T, Kikawada M, Inami W, Kawata Y, Ozaki Y (2016) Direct optical measurements of far- and deep-ultraviolet surface plasmon resonance with different refractive indices. Opt Express 24:21886–21896

    Article  CAS  Google Scholar 

  12. Tanabe I, Tanaka YY, Watari K, Hanulia T, Goto T, Inami W, Kawata Y, Ozaki Y (2017) Aluminum film thickness dependence of surface plasmon resonance in the far- and deep-ultraviolet regions. Chem Lett 46:1560–1563

    Article  CAS  Google Scholar 

  13. Tanabe I, Tanaka YY, Watari K, Hanulia T, Goto T, Inami W, Kawata Y, Ozaki Y (2017) Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films. Sci Rep 7:5934

    Article  Google Scholar 

  14. Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18:14395–14400

    Article  CAS  Google Scholar 

  15. Xu H, Wu L, Dai X, Gao Y, Xiang Y (2016) An ultra-high sensitivity surface plasmon resonance sensor based on graphene-aluminum-graphene sandwich-like structure. J Appl Phys 120:053101

    Article  Google Scholar 

  16. Zeng SW, Sreekanth KV, Shang JZ, Yu T, Chen CK, Yin F, Baillargeat D, Coquet P, Ho HP, Kabashin AV, Yong KT (2015) Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv Mater 27:6163–6169

    Article  CAS  Google Scholar 

  17. Rodrigo D, Limaj O, Janner D, Etezadi D, de Abajo FJG, Pruneri V et al (2015) Mid-infrared plasmonic biosensing with graphene. Science 349:165–168

    Article  CAS  Google Scholar 

  18. Suzuki S, Yoshimura M (2017) Chemical stability of graphene coated silver substrates for surface-enhanced Raman scattering. Sci Rep 7

  19. Schriver M, Regan W, Gannett WJ, Zaniewski AM, Crommie MF, Zettl A (2013) Graphene as a long-term metal oxidation barrier: worse than nothing. ACS Nano 7:5763–5768

    Article  CAS  Google Scholar 

  20. Wang MZ, Tang M, Chen SL, Ci HN, Wang KX, Shi LR, Lin L, Ren H, Shan J, Gao P, Liu Z, Peng H (2017) Graphene-armored aluminum foil with enhanced anticorrosion performance as current collectors for lithium-ion battery. Adv Mater 29

  21. Liu J, Hua L, Li S, Yu M (2015) Graphene dip coatings: an effective anticorrosion barrier on aluminum. Appl Surf Sci 327:241–245

    Article  CAS  Google Scholar 

  22. Chen S, Brown L, Levendorf M, Cai W, Ju S-Y, Edgeworth J, Li X, Magnuson CW, Velamakanni A, Piner RD, Kang J, Park J, Ruoff RS (2011) Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5:1321–1327

    Article  CAS  Google Scholar 

  23. Prasai D, Tuberquia JC, Harl RR, Jennings GK, Bolotin KI (2012) Graphene: corrosion-inhibiting coating. ACS Nano 6:1102–1108

    Article  CAS  Google Scholar 

  24. Topsakal M, Sahin H, Ciraci S (2012) Graphene coatings: an efficient protection from oxidation. Phys Rev B 85

  25. Raman RKS, Banerjee PC, Lobo DE, Gullapalli H, Sumandasa M, Kumar A et al (2012) Protecting copper from electrochemical degradation by graphene coating. Carbon 50:4040–4045

    Article  Google Scholar 

  26. Kirkland NT, Schiller T, Medhekar N, Birbilis N (2012) Exploring graphene as a corrosion protection barrier. Corros Sci 56:1–4

    Article  CAS  Google Scholar 

  27. Zhu JQ, Ruan BX, You Q, Guo J, Dai XY, Xiang YJ (2018) Terahertz imaging sensor based on the strong coupling of surface plasmon polaritons between PVDF and graphene. Sensors Actuators B Chem 264:398–403

    Article  CAS  Google Scholar 

  28. Gonzalez-Campuzano R, Saniger JM, Mendoza D (2017) Plasmonic resonances in hybrid systems of aluminum nanostructured arrays and few layer graphene within the UV-IR spectral range. Nanotechnology 28:465704

    Article  CAS  Google Scholar 

  29. Jiang L, Zeng SW, Xu ZJ, Ouyang QL, Zhang DH, Chong PHJ, Coquet P, He S, Yong KT (2017) Multifunctional hyperbolic nanogroove metasurface for submolecular detection. Small 13

  30. Malitson IH (1965) Interspecimen comparison of the refractive index of fused silica*,†. J Opt Soc Am 55:1205–1209

    Article  CAS  Google Scholar 

  31. Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283

    Article  Google Scholar 

  32. Weber JW, Calado VE, van de Sanden MCM (2010) Optical constants of graphene measured by spectroscopic ellipsometry. Appl Phys Lett 97:091904

    Article  Google Scholar 

  33. Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94:031901

    Article  Google Scholar 

  34. Kumar S (2015) Ajay. Influence of interlayer coupling and intra-layer coulomb interaction on electronic transport in bilayer graphene. Curr Appl Phys 15:1205–1215

    Article  Google Scholar 

  35. Eastment RM, Mee CHB (1973) Work function measurements on (100), (110) and (111) surfaces of aluminium. J Phys F: Metal Phys 3:1738–1745

    Article  CAS  Google Scholar 

  36. Leenaerts O, Partoens B, Peeters FM, Volodin A, Van Haesendonck C (2017) The work function of few-layer graphene. J Phys-Condens Mat 29:035003

    Article  CAS  Google Scholar 

  37. Zhang J, Wei X, Premaratne M, Zhu W (2019) Experimental demonstration of an electrically tunable broadband coherent perfect absorber based on a graphene–electrolyte–graphene sandwich structure. Photon Res 7:868–874

    Article  CAS  Google Scholar 

  38. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    Article  CAS  Google Scholar 

  39. Wu Y, Yao BC, Yu CB, Rao YJ (2018) Optical graphene gas sensors based on microfibers: a review. Sensors 18

  40. Szczesniak B, Choma J, Jaroniec M (2017) Gas adsorption properties of graphene-based materials. Adv Colloid Interf Sci 243:46–59

    Article  CAS  Google Scholar 

  41. Basu S, Bhattacharyya P (2012) Recent developments on graphene and graphene oxide based solid state gas sensors. Sensors Actuators B Chem 173:1–21

    Article  CAS  Google Scholar 

Download references

Funding

This work has been partially supported by the National Key R&D Program of China (2018YFC0910600); National Natural Science Foundation of China (61605121/61835009/61775145/31771584/61620106016/61525503/61775148); Project of Department of Education of Guangdong Province (2015KGJHZ002/2016KCXTD007); Guangdong Natural Science Foundation Innovation Team (2014A030312008); Shenzhen Basic Research Project (JCYJ20170302142902581/JCYJ20170412110212234/JCYJ20170412105003520/JCYJ20160328144746940).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Yuan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Peng, X., Song, J. et al. Ultrasensitive Deep-Ultraviolet Surface Plasmon Resonance Sensors Using Aluminum-Graphene Metasurface: a Theoretical Insight. Plasmonics 15, 135–143 (2020). https://doi.org/10.1007/s11468-019-01015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01015-7

Keywords

Navigation