Skip to main content
Log in

DNA Detection Based on Localized Surface Plasmon Resonance Spectroscopy of Ag@Au Biocomposite Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Noble metal nanoparticles (NPs) have attracted much attention due to their unique physical and chemical properties such as tunable surface plasmonics, high-efficiency electrochemical sensing, and enhanced fluorescence. We produced two biosensor chips consisting of Ag@Au bimetallic nanoparticles (BNPs) on a carbon thin film by simple RF-sputtering and RF-plasma-enhanced chemical vapor co-deposition. We deposited Au NPs with average size of 4 nm (Au1 NPs) or 11 nm (Au2 NPs) on a sensor chip consisting of Ag NPs with mean size of 15 nm, and we investigated the effect of shell size (Au NPs) on the chemical activities of the resulting Ag@Au1 BNPs and Ag@Au2 BNPs. We estimated the average size and morphology of Ag@Au BNPs by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. X-ray diffraction (XRD) patterns revealed that Ag NPs and Au NPs had face-centered cubic (FCC) structure. We studied aging of the biosensor chips consisting of Ag@Au BNPs by localized surface plasmon resonance (LSPR) spectroscopy for up to 3 months. UV–visible aging of the prepared samples indicated that Ag@Au1 BNPs, which corresponded to Ag NPs covered with smaller Au NPs, were more chemically active than Ag@Au2 BNPs. Furthermore, we evaluated changes in the LSPR absorption peaks of Ag@Au1 BNPs and bare Ag NPs in the presence of a DNA primer decamer at fM concentrations, to find that Ag@Au1 BNPs were more sensitive biosensor chips within a short response time as compared to bare Ag NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim D et al (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225(1–2):30–36

    Article  CAS  Google Scholar 

  2. Stoermer RL, Cederquist KB, McFarland SK, Sha MY, Penn SG, Keating CD (2006) Coupling molecular beacons to barcoded metal nanowires for multiplexed, sealed chamber DNA bioassays. J Am Chem Soc 128(51):16892–16903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li Y, Cu YTH, Luo D (2005) Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol 23(7):885–889

    Article  CAS  PubMed  Google Scholar 

  4. Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73(1):1–7

    Article  CAS  PubMed  Google Scholar 

  5. Basuray S, Senapati S, Aijian A, Mahon AR, Chang HC (2009) Shear and AC field enhanced carbon nanotube impedance assay for rapid, sensitive, and mismatch-discriminating DNA hybridization. ACS Nano 3(7):1823–1830

    Article  CAS  PubMed  Google Scholar 

  6. Xu L-J, Lei ZC, Li J, Zong C, Yang CJ, Ren B (2015) Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity. J Am Chem Soc 137(15):5149–5154

    Article  CAS  PubMed  Google Scholar 

  7. Ross P, Hall L, Smirnov I, Haff L (1998) High level multiplex genotyping by MALDI-TOF mass spectrometry. Nat Biotechnol 16(13):1347–1351

    Article  CAS  PubMed  Google Scholar 

  8. Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14(19):5636–5648

    Article  CAS  Google Scholar 

  9. Schuck P (1997) Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Biomol Struct 26(1):541–566

    Article  CAS  PubMed  Google Scholar 

  10. Mahmudin L, Suharyadi E, Utomo ABS, Abraha K (2015) Optical properties of silver nanoparticles for surface plasmon resonance (SPR)-based biosensor applications. J Mod Phys 6(08):1071–1076

    Article  CAS  Google Scholar 

  11. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1(1):13–28

    Article  Google Scholar 

  12. González A et al (2014) Size, shape, stability, and color of plasmonic silver nanoparticles. J Phys Chem C 118(17):9128–9136

    Article  Google Scholar 

  13. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  14. Ghodselahi T, Neishaboorynejad T, Arsalani S (2015) Fabrication LSPR sensor chip of Ag NPs and their biosensor application based on interparticle coupling. Appl Surf Sci 343:194–201

    Article  CAS  Google Scholar 

  15. Jin Y, Dong S (2002) Diffusion-limited, aggregation-based, mesoscopic assembly of roughened core–shell bimetallic nanoparticles into fractal networks at the air–water interface. Angew Chem Int Ed 41(6):1040–1044

    Article  CAS  Google Scholar 

  16. Caswell K, Bender CM, Murphy CJ (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 3(5):667–669

    Article  CAS  Google Scholar 

  17. Hu J-Q, Chen Q, Xie ZX, Han GB, Wang RH, Ren B, Zhang Y, Yang ZL, Tian ZQ (2004) A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Adv Funct Mater 14(2):183–189

    Article  CAS  Google Scholar 

  18. Zhang D, Qi L, Yang J, Ma J, Cheng H, Huang L (2004) Wet chemical synthesis of silver nanowire thin films at ambient temperature. Chem Mater 16(5):872–876

    Article  CAS  Google Scholar 

  19. Lu L, Zhang H, Sun G, Xi S, Wang H, Li X, Wang X, Zhao B (2003) Aggregation-based fabrication and assembly of roughened composite metallic nanoshells: application in surface-enhanced Raman scattering. Langmuir 19(22):9490–9493

    Article  CAS  Google Scholar 

  20. Chen S, Carroll DL (2004) Silver nanoplates: size control in two dimensions and formation mechanisms. J Phys Chem B 108(18):5500–5506

    Article  CAS  Google Scholar 

  21. Pham T, Jackson JB, Halas NJ, Lee TR (2002) Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir 18(12):4915–4920

    Article  CAS  Google Scholar 

  22. Oldenburg SJ, Jackson JB, Westcott SL, Halas NJ (1999) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75(19):2897–2899

    Article  CAS  Google Scholar 

  23. Gittins DI, Susha AS, Schoeler B, Caruso F (2002) Dense nanoparticulate thin films via gold nanoparticle self-assembly. Adv Mater 14(7):508–512

    Article  CAS  Google Scholar 

  24. Caruso F, Spasova M, Salgueiriño-Maceira V, Liz-Marzán LM (2001) Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Adv Mater 13(14):1090–1094

    Article  CAS  Google Scholar 

  25. Pande S, Ghosh SK, Praharaj S, Panigrahi S, Basu S, Jana S, Pal A, Tsukuda T, Pal T (2007) Synthesis of normal and inverted gold− silver core− shell architectures in β-cyclodextrin and their applications in SERS. J Phys Chem C 111(29):10806–10813

    Article  CAS  Google Scholar 

  26. Hamidi-Asl E, Dardenne F, Pilehvar S, Blust R, de Wael K (2016) Unique properties of core shell Ag@Au nanoparticles for the aptasensing of bacterial cells. Chemosensors 4(3):16

    Article  Google Scholar 

  27. Ghodselahi T, Arsalani S, Neishaboorynejad T (2014) Synthesis and biosensor application of Ag@ Au bimetallic nanoparticles based on localized surface plasmon resonance. Appl Surf Sci 301:230–234

    Article  CAS  Google Scholar 

  28. Mollick MMR, Bhowmick B, Maity D, Mondal D, Bain MK, Bankura K, Sarkar J, Rana D, Acharya K, Chattopadhyay D (2012) Green synthesis of silver nanoparticles using Paederia foetida L. leaf extract and assessment of their antimicrobial activities. Int J Green Nanotechnol 4(3):230–239

    Article  CAS  Google Scholar 

  29. Uppal MA, Kafizas A, Ewing MB, Parkin IP (2013) The room temperature formation of gold nanoparticles from the reaction of cyclohexanone and auric acid; a transition from dendritic particles to compact shapes and nanoplates. J Mater Chem A 1(25):7351–7359

    Article  CAS  Google Scholar 

  30. Ji Y, Yang S, Guo S, Song X, Ding B, Yang Z (2010) Bimetallic Ag/Au nanoparticles: a low temperature ripening strategy in aqueous solution. Colloids Surf A Physicochem Eng Asp 372(1–3):204–209

    Article  CAS  Google Scholar 

  31. Ren X, Meng X, Tang F (2005) Preparation of Ag–Au nanoparticle and its application to glucose biosensor. Sensors Actuators B Chem 110(2):358–363

    Article  CAS  Google Scholar 

  32. Raveendran P, Fu J, Wallen SL (2006) A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chem 8(1):34–38

    Article  CAS  Google Scholar 

  33. Guidelli EJ, Ramos AP, Baffa O (2016) Silver nanoparticle films for metal enhanced luminescence: toward development of plasmonic radiation detectors for medical applications. Sensors Actuators B Chem 224:248–255

    Article  CAS  Google Scholar 

  34. Zhao L, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem B 107(30):7343–7350

    Article  CAS  Google Scholar 

  35. Ogura T, Nishimura M, Tatsumi H, Takahara W, Hirose A (2012) Interfacial bonding behavior between silver nanoparticles and gold substrate using molecular dynamics simulation. Mater Trans 53(12):2085–2090

    Article  CAS  Google Scholar 

  36. Su K-H, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3(8):1087–1090

    Article  CAS  Google Scholar 

  37. Li Y, Kalia RK, Nakano A, Vashishta P (2013) Size effect on the oxidation of aluminum nanoparticle: multimillion-atom reactive molecular dynamics simulations. J Appl Phys 114(13):134312

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. M. A. Vesaghi for discussion about AFM data, Dr. H. Mobasheri and Mr. K. Z. Salimi for DNA solvent, and C.M.C.P. Manso for reviewing the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soudabeh Arsalani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsalani, S., Ghodselahi, T., Neishaboorynejad, T. et al. DNA Detection Based on Localized Surface Plasmon Resonance Spectroscopy of Ag@Au Biocomposite Nanoparticles. Plasmonics 14, 1419–1426 (2019). https://doi.org/10.1007/s11468-019-00937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00937-6

Keywords

Navigation